

SIMULTANEOUS ESTIMATION OF CORILAGIN, GALLIC ACID AND ELLAGIC ACID BY HPTLC METHOD

TUSHAR CHHAGAN KAKADE

Dept. of Pharmaceutical Chemistry Poona College of Pharmacy, Pune Maharashtra 411038

Dr. L. SATHIYANARAYANAN

Guide, Dept. of Pharma chemistry Poona College of pharmacy, Pune, Maharashtra.

ATUL RATHOD

Co-guide, Dept. of Pharma chemistry Poona College of pharmacy, Pune, Maharashtra.

ABSTRACT

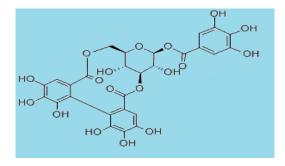
A simple, fast and precise high performance Thin layer chromatographic method has been developed for the simultaneous determination of corilagin, gallic acid and ellagic acid. Usi1223ng Silica gel 60 F_{254s} HPTLC plates, optimized solvent system of *n-butanol:water:Methanol:Formic* acid (6:1:0.1:0.8; v/v/v/v) in a twin trough chamber saturated for 30 min. Validation was carried out by testing its specificity, linearity (300-1300 ng/spot), precision (1.36%, 0.83% and 0.81%), limits of (53.37ng/spot, 50.03ng/spot detection 59.29ng/spot) and quantification (161.74ng/spot, 151.61ng/spot & 179.67ng/spot) for corilagin, gallic acid & ellagic acid respectively.

Keywords: *HPTLC*, *validation*, *corilagin*, *gallic acid and ellagic acid*, *Phyllanthus amarus etc*.

INTRODUCTION

Corillagin (fig:1), 1-O-Galloyl-3,6hexahydroxydiphenol-D-Glucopyranose is used as Anti-inflammatory agent. Gallic acid (fig:2), 3,4,5-Trihydroxybenzoic acid is used as Anti-cancer & Anti-oxidant agent. Ellagic acid(fig:3) : 2,3,7,8tetrahydroxy(1)benzopyrano(5,4,3cde)(1)benzopyran-5,10dione: 4,4',5,5',6,6'-Hexahydroxydiphenic acid 2,6,2',6'-dilactone is used as Anti-

Dr. V.R.PATIL


Principle of HLMC College of Pharmacy, Faizpur, Maharashtra.

KAKASAHEB R. MAHADIK,

Dept. of Pharmaceutical Chemistry, Poona College of Pharmacy, Bharati Vidyapeeth Deemed University, Erandwane, Pune-411038, Maharashtra, India.

cancer,HIV-inhibitor,Anti-oxidant, Antimutagenic, Anti-microbial agent.

Litrature survey reveals that Corilagin estimation by HPLC-MS[8],MS[30],Ellagic acid estimation by HPLC[9], Gallic acid estimation by RP-HPLC[13] ,HPTLC[19,20,21,23], ESI-MS-MS[18], GC-MS[24], LC-MS-MS[25], Ellagic acid & Gallic acid estimation by RP-HPLC[10, 11, 12]. Corilagin & Gallic estimation by GC-MS[28], Corilgin, Gallic acid & Ellagic acid estimation by HPLC[15], HPLC,1H-NMR.ESI-MS[16] was done. Above litrature survey reveals that no method has been reported for simultaneous estimation of Corillagin, Gallic acid & Ellagic acid by HPTLC.

ANVESHANA INTERNATIONAL JOURNALOF RESEARCH IN PHARMACY AND LIFE SCIENCES Email Id: <u>anveshanaindia@gmail.com</u>, Website: <u>www.anveshanaindia.com</u>

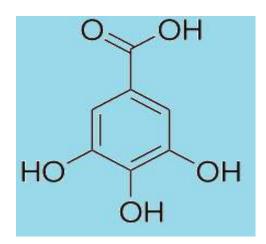


FIG:2 Structure Of Gallic Acid

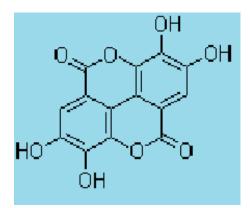


FIG:3 Structure Of Ellagic Acid

Experimental Material

Working standards of corilagin (>98% w/w), Gallic acid (>99% w/w), and Ellagic acid (>95% w/w) markers are obtained from Natural Remedy Pvt. Ltd, Bangalore India. The commercial crude powder of Phyllanthus amarus was collected from Green Pharmacy, Pune and The formullation containing *Phyllanthus* amarus was procured from the local market. All chemicals and reagents of analytical grade were purchased from Merk Chemicals, Mumbai, India.

Selection of analytical wavelength

Stock solutions of drugs were prepared in methanol separately. UV spectrum of 100 μ g mL⁻¹ of each individual drug was taken.

Instrumentation and chromatographic conditions

The hptlc plates were prewashed with methonal and activated at 110° c for 5min prior to chromatography. The sample were spoted in the form of bands 6mm width with a CAMAG 100µL sample syringe(HAMILTON, BONADUZ, SWITZERLAND) on silica gel precoated HPTLC aluminium plate 60 F₂₅₄ [(20x10 cm) with250µm thickness; E Merk, Germany, Darmstadt, supplied by ANCHROM technologies, Mumbai] using CAMAG linomat applicator a V (Switzerland). A constant application rate of 0.1µL/s was used and space between two bands of 6mm. linear ascending development was carried out in 20cm x 10cm twin through glass chamber (CAMAG, MUTTENZ, Switzerland) saturated with mobile phase. The mobile phase was consisted of n-Butanol: water: methanol: formic acid(6:1:0.1:0.8, v/v/v/v) and 20ml was used per chromatographic run. The optimized chamber saturation time with mobile phase was 30min using saturation pad at room temperature (25°C \pm 2). The length of chromatogram run was 80mm and run time was 45min. Densitometric scanning was performed using a CAMAG TLC scanner III in the reflectance absorbance mode and operated by winCATs software (V 1.1.4, Camag). The slit dimension was kept at 5mm x 0.45mm and the scanning speed was 10mm/s. The source of radiation used was deuterium lamp emitting a continuous UV spectrum between 200 and 400nm. All determinations were performed at ambient temperature with a detection wavelength of 283nm.Concentration of the compound chromatographed were determined from the intensity of defused light. Evaluation was by peak area with linear regression.

ANVESHANA INTERNATIONAL JOURNALOF RESEARCH IN PHARMACY AND LIFE SCIENCES Email Id: <u>anveshanaindia@gmail.com</u>, Website: <u>www.anveshanaindia.com</u>

Standard solutions and calibration graphs

Stock standard solution containing corilagin(100µg/ml), Gallic acid (100µg/ml) and Ellagic acid (100µg/ml) was prepared by dissolving 1mg each of accurately weight markers in methanol up the volume to 10mL with methanol. Different volumes of stock standard solution wete applied on the HPTLC plate to obtained working standard in the concentration range of 300-1300ng/spot for corilagin and 300-1300ng/spot for gallic acid and 300-1300ng/spot for Ellagic acid, respectively. Each concentration was applied six times on the HPTLC plate. The plate was then developed using the previously described mobile phase. The peak areas were ploted against the currosponding concentration to obtained the calibration graph. Linear calibration curves were generated using least-squares linear-regression analysis.

Sample preparation

1. Estimation of corilagin ,gallic acid and ellagic acid in commercial crude powder of Phyllanthus amarus Linn.

500mg of powder of plant material was extracted separately with $(4 \times 25)ml$ of water:methanol(70:30, v/v).The extract was centrifuge at 5000rpm for 10min and the supernatant was filtered through a $0.45 \mu m$ nylon syringe filter before chromatographic analysis and analysed for the drug content. The analysis was repeated times. six 1.Analysis of commercial formulation Phyllanthus amarus: To detesrmines the content of corilagin, Gallic acid, Ellagic acid in containing, the contents of twenty tablets were weighed, their mean weight determined and they were finely powdered.

The weight of powder equivalent to tablet transferred content was into 50mL volumetric flask containing 20mL water: Methanol (70:30, v/v), sonicated for 30 min and diluted to 50 mL with water. Methanol [70:30, v/v]. The resulting solution was centrifuged at 3000 rpm for 15 min and supernatant was analysed for the said markers. The filtered solution was spotted on the HPTLC plate followed by development and scanning. validation Method The optimized HPTLC method was validated with respect to the following parameters as per the ICH guidelines [7] Precision Precision study was carried out for the repeatability of sample application and measurement and the result was expressed as % RSD of peak areas. Variability of the method was studied by analyzing by aliquots of standard solution of Corilagin (300, 700, 1300 ng/spot). Gallic acid (300, 700, 1300 ng/spot). And Ellagic acid(300, 700, 1300 ng/spot). On the same day (intraday precision) and on

the different days (inter-day precision) and on and the results were expressed as % RSD **Robustness**

Robustness of the method was checked by making intentional changes in the parameters. Small change in the mobile phase composition was tried (Formic acid \pm 0.01 ml). the amount of mobile phase was varied in the range of \pm 5%. The plates were prewashed with methanol and activated at 110 °C \pm 5 for 5, 10, 15 min respectively prior to chromatography. Time from the spotting to chromatography and from chromatography to scanning was varied from 0, 30, 60, 90 min. robustness the three was done at different concentration level 300, 700, 1300 ng/spot for Corilagin, Gallic acid, Ellagic acid, Respectively

Limit of detection (LOD) and limit of quantitation (LOO) The detection limit of an indivisual analytical procedure is the lowest amount of analyte in a sample that can be detected but not necessarily exact value. quantitated as an The quantitation limit of an individual analytical procedure is the lowest amount of analyte in the sample that can be quantitatively determined with suitable precision and accuracy. LOD and LOQ of Corillagin, Gallic acid and Ellagic acid were determined by calibration curve method. LOD and LOQ were calculated by using following equation.

 $LOD = \underbrace{3.3 \times Sy.x;}_{S} \qquad LOQ = \underbrace{10.0 Sy.x;}_{S}$

Where, Sy.x is a standard deviation of reciduals from line; S is slope

Specificity

The identity of the spot of the markers in sample was confirmed by comparing the R_f and spectra of the spot with that of the standard. The peak purity of the markers was aassessed by comparing their respective spectra at peak start (S), peak apex (M) and peak apex (E) positions of the spot.

RESULTS 3 AND **DISCUSSION: Optimization** of procedure: Initially, mobile phase was selected on the basis of previous reports of Gallic acid and Ellagic acid. Acommon mobile phase consisting of toluene, ethyl acetate, methanol and formic acid was tried initially. Several modification were tried on trails, addition of water was found to be sutaible for the moment of Corilagin whereas Formic acid have effect on the peak shape of Corilagin. Hence the final mobile phase was optimized as n-butanol :Water:Methanol:Formic acid (6:1:0.1:0.8, v/v/v/v) which was found to give desirable R_f value. The optimized mobile phase can able to give symmetrical, well resolved reproducible peaks with good shape and baseline separation. The R_f values obtained were 0.44,0.79 and 0.63 for Corilagin, Gallic acid and Ellagic acid was taken.

Selection of analytical wavelength

283nm was selected as scanning wave length (fig:4). The identities of the bands from the sample extracts and commercial formulations were confirmed by overlapping the densitograms of standerd with that of samples.

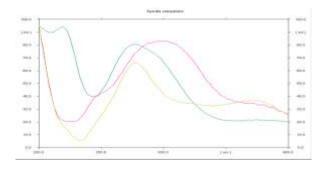
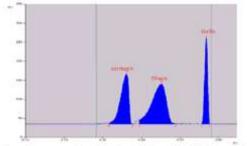
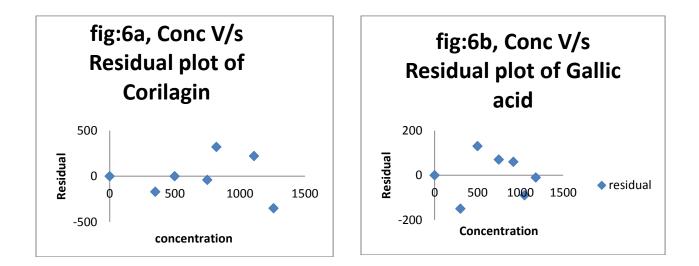



Fig4. In situ HPTLC spectral overlain of Corilagin, Gallic acid and Ellagic acid

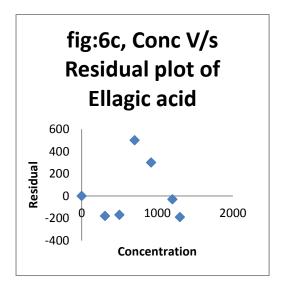
Densitogram of corilagin, Gallic acid & Ellagic acid 600ng/spot

LINEARITY: Linear relationships were observed by ploting drug concentration against peak areas for each compound. Corilagin, Gallic acid and Ellagic acid show linear response in the concentration



range of 300-1300ng/spot, respectively. The corresponding linear regression equation was y=15.46x-1369, y=6.888x+1962 and y=15.98x-1895 with square of correlation coefficient (r^2) of 0.9981, 0.9984 and 0.9977 for corilagin, allic acid and Ellagic acid respectively. No significant difference was observed in the slope of standard curve (Table:1).Residual analysis was performed to ascertain linearity (fig:6).

Parameters	Corilagin	Galic acid	Ellagic acid	
Linearity range	-1 300-1300 ng spot	300-1300 ng spot ⁻¹	⁻¹ 300-1300 ng spot	
$R^2 \pm S.D.$	$0.9981 \pm 0.0007 \qquad 0.9984 \pm 0.002$		0.9977 ± 0.001	
Slope ± S.D.	15.46 ± 0.3342	6.888±0.1394	15.98±0.3838	
Intercept \pm S.D	-1359± 290.7	1962± 121.4	-1895±333.9	
Confidence limit of slope ^a	14.54 to16.39	6.501 to7.275	14.92 to 17.05	
Intercept ^a	-2166 to-552.2	1626 to 2300	-2822 to -968.4	
Sy.x ^b	279.6	116.8	321.1	


^a 95% Confidence interval

^b Standard deviation of residuals from line

ANVESHANA INTERNATIONAL JOURNALOF RESEARCH IN PHARMACY AND LIFE SCIENCES Email Id: <u>anveshanaindia@gmail.com</u>, Website: <u>www.anveshanaindia.com</u>

SEARCH IN PHARMACY AND LIFE SCIEN

The repeatability of the sample application and measurement of peak area were expressed as % RSD of corilagin, gallic acid and ellagic acid, respectively. The result of intermediate precision experiments are shown in table:2. The developed method was found to be precise as the RSD value of repeatability and intermediate precision studies were < 2%, respectively as recommended by ICH guidelines. Separation of the drug was found to be similar when analysis was performed using different chromatographic system on different days.

Precision studies of proposed HPTLC method Table:2

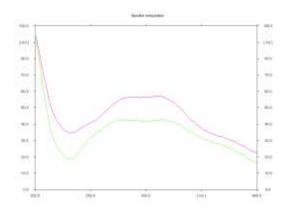
		Repeatability (intra-day)	7	Intermediate precision (inter-day)		
Drugs	Conc. (µg mL ⁻¹)	Found conc. ± S.D.	%. R.S.D.	Found conc. ± S.D.	% R.S.D.	
	300	299.46 ± 1.08	0.36	294.01 ± 2.05	0.70	
Corilagin	700	695.13 ± 3.72	0.53	689.19 ± 4.20	0.61	
	1300	1342.02 ± 5.81	0.43	1325.94 ± 18.12	1.36	
	300	301.04 ± 0.95	0.32	302.06 ± 0.68	0.23	
Gallic	700	700.71 ± 5.86	0.84	701.28 ± 4.65	0.66	
acid	1300	1290.43 ± 15.23	1.18	1299.41 ± 10.73	0.83	
	300	292.78 ±1.34	0.46	297.45 ± 1.67	0.56	
Ellagic	700	704.86 ± 2.77	0.39	702.53 ± 2.89	0.41	
acid	1300	1311.37 ± 12.53	0.96	1302.16 ± 10.55	0.81	

Robustness

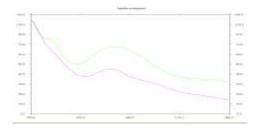
The standard deviation of the peak areas were calculated for each parameter and the

%RSD was found to be less than 2%. The low values of the %RSD as shown in table 3 indicated the robustness of the method.

Parameters	S	.D. of p	eak area		%R.S.D.			
	Co	rilagin	Gallic acid	Ellagic acid	Corilagin	Gallic	Ellag id ac	gic cid
Mobile phase composition (formic acid ± 0.01 ml)	3.18	3.2	5	2.73	0.65	0.43	0.43	
Amount of mobile phase $(\pm 5 \%)$	2.94	3.6	3	1.57	0.50	0.66	0.18	
Time from spotting to chromatography		2.33	3.40	2.75	0.41	0.48	0.45	
Time from chromatography to scanning		2.87	4.52		2.55	0.47	0.89	0.36
Plate pretreatment	1.98	2.7	8	2.11	0.34	0.29	0.28	


Robustness testing of HPTLC method Table:3

Limit of detection and limit of Quantitation


The LOD & LOQ was found to be 53.37, 161.74 ng/spot for corilagin, 50.03, 151.61 ng/spot for Gallic acid and 59.29, 179.67 ng/spot for ellagic acid, respectively.

Specificity

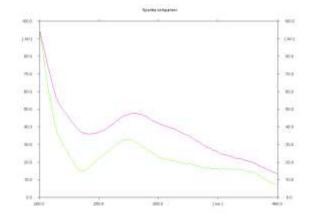

The peak purity of Corilagin, Gallic acid and Ellagic acid was assessed by comparing their respective spectra at the peak start, apex and peak end positions of the spot i.e., r(S, M) =0.999467, r (M, E) = 0.998935, r (S, M) =0.999786, r (M, E) = 0.996751 and r (S, M) = 0.999787, r (M, E) = 0.996050 respectively. A good correlation ($r^2 = 0.999$, $r^2 = 0.996$ and $r^2=0.996$) was also obtained between the standard and commercial crude powder sample spectra of Corilagin, Gallic acid and Ellagic acid. A good correlation ($r^2 = 0.998$, $r^2 = 0.999$ and $r^2=0.998$) was also obtained between the standard and commercial formulation sample spectra of Corilagin, Gallic acid and Ellagic acid .A good correlation($r^2=0.998$, $r^2=0.999$ and $r^2=0.998$) was also obtained between the standard and commercial formulation 2 sample spectra of corilagin,Gallic acid and Ellagic acid (fig:6a, 6b, 6c).

Fig6a.In situ HPTLC spectral overlain of Corilagin obtained from standard and commercial crude powder of *Phyllanthus amarus*

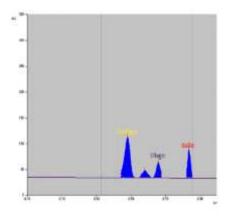


Fig6b: In situ HPTLC spectral overlain of Gallic acid obtained from standard and commercial crude powder of *Phyllanthus amarus*.

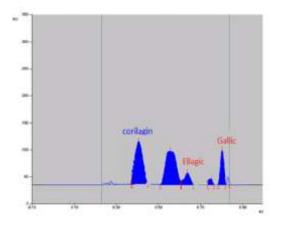
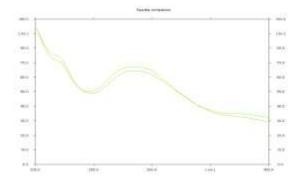


Fig6c. In situ HPTLC spectral overlain of Ellagic acid obtained from standard and commercial crude powder of *Phyllanthus amarus*.

Analysis of the commercial crude powder and commercial formulation of phyllanthus Analysis of the amount of amarus corilagin, Gallic acid and Ellagic acid studied application of the developed method in commercial crude powder and commercial tablets, using the reference comparison method. The content of corilagin, gallic acid and ellagic acid were found to be 0.030%, 0.035% and 0.072% for commercial crude powder of Phyllanthus amarus and 0.013%, 0.080% and 0.104% in commercial formulation, respectively.(fig:7, 8 & 9-a,b,c)


Fig:7.Densitogram of commercial crude powder of *Phyllanthus amarus*. Corilagin (R_f 0.45), Gallic acid (R_f 0.80) and Ellagic acid (R_f 0.66)

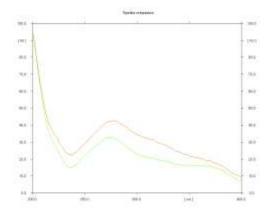

Fig:8 Densitogram of Commercial Formulation of *Phyllanthus amarus*. Corilagin (R_f 0.44), Gallic acid (R_f 0.80) and Ellagic acid (R_f 0.64)

Fig:9a In situ HPTLC spectral overlain of Corilagin obtained from standard and commercial Formulation

Fig:9b In situ HPTLC spectral overlain of Gallic acid obtained from standard and commercial Formulation

Fig:9c In situ HPTLC spectral overlain of Ellagic acid obtained from standard and commercial Formulation

Table:4 Estimation of drug content insamples

Samples Drug Content* (% w/w)						
Corilagin	Gallic acid	Ellagic acid				
Commercial crude powder						
0.030%	0.035%	0.072%				
Marketed Formulation						
Formulation						
0.013%	0.080%	0.104%				

*Mean ± Standard deviation (n=3)

Result&DiscussionAnalysis of the amount of corilagin, Gallicacid and Ellagic acid studied application ofthe developed method in commercial crudepowder and commercial tablets, using thereference comparison method. The content ofcorilagin, Gallic acid and Ellagic acid werefound to be 0.030%, 0.035% and 0.072% forcommercial crude powder ofPhyllanthusamarusand 0.013%, 0.080% and 0.104% incommercial formulation, respectively.

CONCLUSION

We established a HPTLC method for simultaneous estimation of the constituents corilagin, Gallic acid and Ellagic acid.The proposed method was found to be suitable for estimation of this markers in polyherbal formulation as it is proved to be précised, reproducible, reliable and robust. Hence, this method can be used for as a rapid analytical tool in routine analysis to monitor loss or variation of the content of the markers in various herbal formulation

REFERENCES

1. Lei Zhao a, Shu-Ling Zhang a, Jun-Yan Tao b, Ran Pang a, Fang Jin c, Yuan-Jin Guo d, Ji-Hua Dong e, Pian Yea, Hong-Yang Zhao Guo-Hua Zheng с, "Priliminary exploration of an anti-Inflamatory mechanism of corilagin invitro international immunopharmacology, vol no:8, pp:1059-1064,[2008]

2. Elrashid Saleh Mahdi1*, Azmin Mohd Noor1. Mohamed Hameem Sakeena1. Ghassan Z. Abdullah1, Muthanna Abdulkarim1 and Munavvar Abdul Sattar2 " Identification of phenolic compounds and Assessment of in vitro antioxidants activity of 30% ethanolic extracts derived from two Phylanthus Species indigenous to Malaysia", African Journal of Pharmacy and Pharmacology Vol. 5(17), pp. 1967-8 November, 1978. 20111 3. Leonardo Sepúlveda1, Alberto Ascacio1. Raúl Rodríguez-Herrera1, Antonio Aguilera- Carbó2 and Cristó'BAL N. Aguilar1 "Ellagic acid: Biological and Biotechnological properties development for production processes" African Journal of Biotechnology Vol. 10(22), pp. 4518- 4523, 30 May, [2011]. 4. Nuchanart rangkadilok, † luksamee worasuttayangkurn, †Richard n. Bennett, ‡ and jutamaad satayavivad* "Identification of Quantification Polyphenolic and Compounds in Longana (Euphoria longana Fruit" Lam.) 5. Elrashid Saleh Mahdi1*, Azmin Mohd Noor1, Mohamed Hameem Sakeena1, Ghassan Z. Abdullah1, Muthanna

Abdulkarim1 and Munavvar Abdul Sattar2, "Identification of phenolic compounds and assessment of *in vitro* antioxidants activity of 30% ethanolic extracts derived from two *Phylanthus* species indigenous to Malaysia" African Journal of Pharmacy and Pharmacology Vol. 5(17), pp. 1967- 1978, 8 November, [2011].

6. T. F. Reiss, P. Chervinsky, R. J. Dockhorn, S. Shingo, B. Seidenberg and T. B. Edwards, "Montelukast, a Once-Daily Leukotriene Receptor Antagonist, in the Treatment of Chronic Asthma," *Archives of Internal Medicine*, Vol. 158, No. 11, pp. 1213-1220, 1998. H. E. Claesson and S. E. Dahlen, "Asthma and leukotrienes: antileukotrienes as novel anti-asthmatic drugs," *Journal of Internal Medicine*, Vol. 245, No 3, pp.205-27, 1999.

7. P. V. Polawar, U. D. Shivhare, K. P. Bhusari and V. B. Mathur, "Development and Validation of Spectrophotometric Method of Analysis for Fexofenadine HCl," *Research Journal of Pharmacy and Technology*, Vol. 1, No. 4, pp. 539-540, 2008.

8. B. Narayana and K. Veena, "A New Method for the Spectrophotometric of Determination Fexofenadine Journal Hydrochloride," Indian of Chemical Technology, Vol. 17, pp. 386-390. 2010. 9. K. S. Kumar, V. Ravichandran, M. K. Mohan Maruga Raja, R. Thyagu and A. "Spectrophotometric Dharamsi, Fexofenadine Determination of Hydrochloride," Indian Journal of Pharmaceutical Sciences, Vol. 68, No. 6, 841-842. 2006. pp. T. Radhakrishna and G. Om Reddy, 10. "Simultaneous Determination of Fexofenadine and its Related

Compounds by HPLC," Journal of Pharmaceutical and Biomedical Analysis, Vol. 29, No. 4, pp. 681–690, 2002.

11. S. Karakus, I. Kucukguzel and S. G. Kucukguzel, "Development and Validation of A Rapid RP-HPLC Method for the Determination of Cetirizine or Fexofenadine with Pseudoephedrine in Binary Pharmaceutical Dosage Forms," Journal of *Pharmaceutical* and Biomedical Analysis, Vol. 46, No.2, pp. 295-302. 2008. 12. M. Miura, T. Uno, T. Tateishi and T. Suzuki, "Determination of Fexofenadine Enantiomers in Human Plasma with High-Performance Liquid Chromatography," Journal *Pharmaceutical* of and Biomedical Analysis, Vol. 43, No.2, pp. 741-745, 2007. 13. T. Uno, N. Yasui-Furukori, T. Takahata, K. Sugawara and T. Tateishi, "Liquid Chromatographic Determination of Fexofenadine in Human Plasma with Fluorescence Detection," Journal of Pharmaceutical and Biomedical Analysis, Vol. 35, No. 4, 937-942. 2004. pp. M. S. Arayne, N. S. H. Shehnaz and 14. A. Haider, "RP-HPLC Method for the Quantitative Determination of Fexofenadine Hydrochloride in Coated Tablets and Human Serum," Medicinal Chemistry Research, Vol. 20, No. 1, pp. 55-61. 2011. 15. M. Gergov, J. N. Robson, I. Ojanpera, O. P. Heinonen and E. Vuori, "Simultaneous Screening and Quantitation of 18 Antihistamine Drugs in Blood by Liquid Chromatography Ionspray Tandem Mass Spectrometry," Forensic Science International, Vol. 121, No. 1. 108–115. 2001. pp. 16. I. Fu, E. J. Woolf and B. K.

Matuszewski, "Determination of Fexofenadine in Human Plasma Using 96-Well Solid Phase Extraction and HPLC Tandem Mass with Spectrometric Detection," Journal of Pharmaceutical and Biomedical Analysis, Vol. 35, No. 4, 837 -846. 2004. pp. 17. A. R. Breier, N. S. Nudelman, M. Steppe and E. E. S. Schapoval, "Isolation and Structure Elucidation of Photodegradation Products of Fexofenadine," Journal of Pharmaceutical and Biomedical Analysis, Vol. 46, No. 2, pp. 250-257, 2008. 18. P. Solairaj, A. R. Bhat, G. K. Govindarajan Suvarna. R. and R. Venkatraman, "HPTLC Method for the Estimation of Fexofenadine HCl in Tablet Dosage Form," Indian drugs, Vol. 42, 424-427. No.7. 2005. pp. 19. S. N. Meyyanathan, P. A. Shirsode and B. Suresh, "Analysis of Fexofenadine in Pharmaceutical Preparations by High Performance Thin Layer Chromatography," Indian drugs, Vol. 42, No. 4, 248-250, 2005. pp. 20. V. Pawar, S. Pai and G. K. Roa, "Development and Validation of UV Spectrophotometric Method for Simultaneous Estimation of Montelukast Sodium and Bambuterol Hydrochloride in Bulk and Tablet Dosage Formulation," **Pharmaceutical** Jordan Journal of Sciences, Vol. 1, No. 2, pp. 152-157, 2008. I. Alsarra, N. Y. Khalil, M. Sultan, 21. R. Al-Ashban F. and Belal. "Spectrofluorimetric Determination of Montelukast in Dosage Forms and Spiked Human Plasma," Phaemazie, Vol. 60, No. 11, 823-826, 2005. pp. 22. A. S. Rathore, L. Sathiyanarayanan and K. R. Mahadik, "Development of Validated HPLC and HPTLC Methods for Simultaneous Determination of

Dihydrochloride Levocetirizine and Montelukast Sodium I in Bulk Drug and Pharmaceutical Dosage Form." Pharmaceutica Analytica Acta, Vol. 1, No. 1. 1-6. 2010. pp. 23. T. Radhakrishnaa, A. Narasarajua, M. and A. Satyanarayana, Ramakrishnab "Simultaneous Determination of Montelukast and Loratadine by HPLC and Derivative Spectrophotometric Methods," **Pharmaceutical** Journal of and Biomedical Analysis, Vol. 31, No. 2, pp. 359-368, 2003 24.S. Al-Rawithi, S. Al-Gazlan, W. Al-Ahmadi, I. A. Alshowaier, A. Yusuf and D. A. Raines, "Expedient Liquid Chromatographic Method with Fluorescence Detection for Montelukast Sodium in Micro-Samples of Plasma," Journal of Chromatography B, Vol. 754, No.2, 527-531. 2001. pp. 25. H. Ochiai, N. Uchiyama, T. Takano, K. Harsa and T. Kamei, "Determination of Montelukast Sodium in Human Plasma by Column-Switching High Performance Liquid Chromatography with Fluorescence Detection," Journal of Chromatography B, Vol. 713, No.2, pp. 409-414, 1998. 26. B. Chauhan, R. Shubha, M. Nivsarkar and H. Padh, "A New Liquid-Liquid Extraction Method for Determination of Montelukast in Small Volume Human Samples using HPLC Plasma with Fluorescence Detector," Indian Journal of Pharmaceutical Sciences, Vol. 68, No. 4, 517-20, 2006. pp. 27. L. Liu, H. Cheng, J. J. Zhao and J. D. Rogers, "Determination of Montelukast (MK-0476) and S- Enantiomer in Human Plasma by Stereo Selective High Performance Liquid Chromatography with Switching," Column Journal of Pharmaceutical and Biomedical Analysis, Vol. 15, No. 5, pp. 631- 638, 1997.

RERF

AIJRPLS VOLUME 1, SPECIAL ISSUE (2016, Dec) (ISSN-2456-3889) Online ANVESHANA INTERNATIONAL JOURNALOF RESEARCH IN PHARMACY AND LIFE SCIENCES

28. P. Robert, L. Pauline, M. M. Wayne and K. Elizabeth, "A Rapid and Sensitive Method for Quantitation of Montelukast in Sheep Plasma using Liquid Chromasatography/Tandem Mass Spectrometry," Journal of Chromatography B, Vol. 858, No. 1-2, pp. 282-286, 2007. 29. D. V. Bharathi, K. K. Hotha, B. Jagadeesh, R. Mullangi and A. Naidu, "Ouantification of Montelukast, Selective Cysteinyl Leukotriene Receptor (Cyslt1) Antagonist in Human Plasma by Liquid Chromatography–Mass Spectrometry: Validation and its Application to A Human Pharmacokinetic Study," Biomedical Chromatography, Vol. 23. No. 8. pp. 804-810, 2009. 30. I. A. Alsarra, "Development of A Stability Indicating HPLC Method for the Determination of Montelukast in Tablets and Human Plasma and its Application to Pharmacokinetic and Stability Studies," Saudi Pharmaceutical Journal, Vol. 12, No. 4. 136-43. 2004. pp. 31. A. B. Eldin, A. A. Shalaby and M. El-Tohamy, "Development and Validation of A HPLC Method for the Determination of Montelukast and its Degradation Products in Pharmaceutical Formulation using An Experimental Design," Acta Pharmaceutica Sciencia, Vol. 53, pp. 45-56. 2011. 32. R. T. Sane, A. Menezes, M. Mote, A. Moghe and G. Gundi. "HPTLC Determination of Montelukast Sodium in Bulk Drug and in Pharmaceutical International Conference on Harmonization (ICH Q2 (R1). Validation Analytical Procedures: Text of & Methodology, IFPMA, Geneva, Switzerland. 2005. 33.International Conference on Harmonization (ICH Q2 (R1). Validation

of Analytical Procedures: Text and Methodology, IFPMA, Geneva, Switzerland, 2005.