

SYNCHRO PHASOR TECHONOLOY ADOPTION IN INDIAN GRID SYSTEM

Prof. K.K.JAIN (Ph.D),
PROFESSOR EEE,
ELLENKI college of Engineering & technology
PATEL GUDA HYDERABAD 500032
kkj9502162631@gmail.com
cell no: 09502162631
aiceteab2015@gmail.com

Abstract:

Synchrophasor technology is a powerful tool for diagnose, prevention and cure for grid system. Synchrophasor are high speed real time synchronized measurement device used for finding health of electrical grid. It is also considered as ULTRA FAST measurement system of grid parameters, and is 100 times faster than present SCADA system. With Synchrophasor data's electrical utilities can use existing power more efficiently and push more power through existing grid system. It reduces likely hood of power disturbances, false trips and cascade tripping leading towards BLACK OUT'S. Power grid proposed to go in big way for WAMS (wide area management systems) for whole country. Under pilot project 4 no's Synchrophasors have been deployed in northern grid viz (1) Kanpur (2) Vindhyachal (3) Dadri (4) Moga, 400 KV substations and is being monitored at NRLDC, DELHI. The results are very much encouraging. This paper describes synchrophasor technology and its advantage over present SCADA system and how utilities can Integrate synchrophasor data's in existing SCADA/EMS. WAMS technology using PMU (Phasor measurement unit) data is found instrumented in improving early warning system. Wide area protection system and many other applications.

Key words: Synchrophasor technology, SCADA /EMS (Electrical measurement systems), NRLDC (north regional load dispatch centre). WAMS

[1] INTRODUCTION:

Indian grid is fourth biggest in world (USA, EUROPE, CHINA & INDIA) transferring power through five regional grids and one national grid with transmission voltage ranging from 132/220/400/765 KV Ac and ± 500 KV HVDC transmission system. Interconnecting regional grids by HVDC

Transmission inter link system. Our grid system has been using SCADA/EMS system for grid data processing and monitoring. Recently power grid has deployed four (4) Synchrophasors in northern grid in May 2010. Viz at 1) Kanpur (2) Vindhyachal (3) Dadri (4) Moga. NRLDC is monitoring & analysis PMU datas at Delhi. This technology has reduced possibility of future BLOCK OUT'S of systems. It is 100 times faster than present SCADA system. It is possible to monitor inside view of grid system of dynamic study of grid disturbance can be studied and analysis well.

Synchrophasors are the phasor measurements taken synchronously at same instant of time. A phasor is a complex number that represents both magnitude and phase angle of the electricity waves.

Synchrophasors measurements can be taken precisely and time synchronously by the devices called phasor measurement unit (PMUs) which are synchronized with help of GPS. These measurements are taken at high speed typically 25 or 50 observations per second. Each measurement is time – stamped according to a common time reference provided

[2] PRESENT POWER STATUS OF COUNTRY

Indian power system is expanding at high rate with present installed Power Generation capacity has reached to the level of 2,53,000 MW by end of 31-3-2015. Power is generated through by 2000 Nos generating units feeding power to the grid. The size of generating set is 30 mw to 660mw in the thermal generation. In Hydel it is 10mw to 150mw each unit .Through Thermal Power stations of country generates 67% and from Hydel it is 20% of total Power and through Nuclear Power we Generate only 3% and conventional Renewable Non generation is 10% only, mostly through wind power and biomass. Solar PV is opening their accounts now. Transmission system is having 132/220/400 KV and 765 KV AC system and + 500 kV through HVDC inter connected systems. In near future 1200 KV AC and 800 KV HVDC system is going to be introduced by year 2015. The complexity of operation of grid system will be further increased.

[3] INDIAN ELECTRICITY GRID CODE 2010

As per Indian Electricity Grid code 2010clause no 4.6.2

"The Reliable and efficient speech and Data Communication System shall be provided to facilitate necessary communication and data exchange, and supervision/control of the grid by the RLDC, under normal and abnormal conditions. All users, STUs and CTU shall provide systems to telemeter power system parameter such as flow, voltage and status of switches/transformer taps etc. in line with interface requirements and other guideline made available by The associated communication RLDC. system to facilitate data flow up to appropriate data collection point on CTUs system, shall also be established by the

concern user or STU as specified by CTU in the Connection Agreement. All users/ STUs in coordination with CTU shall provide the required facilities at their respective ends as specified in the Connection Agreement" Synchrophasor definition measurement and applications have been coded in IEEE – 1344 and IEEE- C37.118 – 2005 standards in power systems the time accuracy of measurement reached up to 1 micro second, that is why the inside view of power system can be seen Dynamically and necessary preventive steps can be taken by system operators to avoid cascade tripping and black outs.

National ,Regional ,and State level load dispatch centres: The country Geographaphically divided in five regions namely N,E,W, North-East and South Region from power system point of view 1st four out of five regional grid operating in synchronous mode with south region which Inter connected with through asynchronous links Each of Five regions is carrying out grid management with support of system at regional load dispatch centers (RLDC) Data exchange with state load dispatch centers (SLDC) is taking place with ICCP connectivity between RLDC & SLDC for Integrated grid operation. Inter Regional connectivity through HVDC B2B and EHV Transmission network

There are 33 control centers and 315 RTUs locations in Northern grid itself in integrated manner

NATIONAL GRID

Realization of Nation's dream in formation of an Integrated National Grid with optimal and economic dispatch of Power between Regions/states is the driving force behind contemplating the load dispatch and communication Project for the country The capability, faster system restoration, post

disturbance data Analysis. Government of India has entrusted Power Grid with the responsibility of implementing the load dispatch& Communication Project In association with the constituents The National Grid aims to integrate the Power Transmission Network across the country and consists of follow

control-- National, Regional, State and Area Load Dispatch centers

- 1. Wide Area Protection scheme (WAP's) detecting and analyzing transfer IV COMPONENTS OF WAMS TECHNOLOGY
- 4.1 PMU's
- 4.2 Phasor Data concentrator (PDC).
- 4.2.1 Substation Phasor Data concentrator (SPDC)
- 4.2.2 Master Phasor Data concentrator (MPDC)
- 4.2.3 System architecture for WAMS in India.
- **4.1 PMU** measurements are providing real time measurement of electrical quantity MW, MVAR, Voltage, Current, Phase angle of voltage, Power factor etc., its application includes validation, modeling, stability, magnitude and maximum power transfer. It is receiving
 - 1. Faults recording
 - 2. Dynamic system monitoring installation and continuous.
 - 3. Sequence event recording
 - 4. Power quality
 - 5. Fault location
 - 6. Syncrophasor data Sending through C.37.118, system

5.Installation of PMU

Input components (A)PM UNIT (SEL-451)

• 3 nos voltage Input

- 3 nos current inputs from selected CVTS,CTS of selected feeders.
- (B) GPS UNIT (SEL-2404) Global Position
 - Accurate Time
 - Time synchronized.

Case study of AP state

AP State Estimator to State Measurement State Estimator (SE) tools currently deployed in SCADA system uses measurements i.e., MW, MVAR, voltage magnitude except ,Phase angle measurement etc., which is done in case of Synchrophasors.

SALIENT FEATURES OF THE ULDC/SLDC SCHEME

EMS/SCADA

Energy Management System and Supervisory control and Data Acquisition System in five hierarchical control centers integrating RTUs located at 125 strategic substations and generating stations spread across the A.P.Grid for polling real time data for monitoring, control and analysis.

(6) HIERARCHICAL CONTROL CENTER SETUP OF LOAD DISPATCH CENTERS

NLDC (NATIONAL LOAD DISPATCH CENTER) DELHI

RLDCs (REGIONAL LOAD DISPATCH CENTERS)

- (1) NRDC
- (2) ERLDC
- (3) SRLDC

- (4) WRLDC
- (5) NERDC

SLDCs (STATE LOAD DISPATCH CENTER---ANDHRA PREDESH)

CPCC, PONDY, TNEB AP, KARNATAKA KERALA

ALDCs ----- (AREA LOAD DISPECH CENTERS OF AP)

WGL HYD VJA CDP

RTUs - 1TO 19 1TO 32 1TO 34 1TO 31

SYNCROPHASOR TECHNOLOGY THROUGH GPS SYSTEM

There are 24 Nos SATELLITES which are in 24 orbits at the distance of 16000 km from Earth and 6 orbits are being viewed all time giving time accuracy of 1 micro seconds.

The advent of SATELLITE based time keeping systems advances in computer technology have made possible protective relays sampling synchronization with 1 micro seconds. These relays can now provide synchronized Phasor measurements that eliminate the need to have different devices for protection, control and electrical power system analysis for system wide application and traditional protection applications. System wide application have different sampling & signal processing requirement than do traditional protection applications.

POWER SYSTEM ANALYSIS

NLDC: NORTHERN LOAD DISPATCH CENTER

Substation	Instate	Offline
------------	---------	---------

	estimate at	mode		
	NLDC	(terminals)		
	(terminals)			
765 KV	2	2		
400 KV	275	284		
220 KV	34	1315		
TRANSMISSION LINES				
765 KV	2	2		
400 KV	611	622		
220 KV	51	3034		
Transformers	794	2031		
Load	834	2672		
Generator	263	557		

Table no:1

A comparison of truncated state estimator network and All India Network, used offline studies is given above.

PMU's are installed at Dadri, Kanpur, Vindhyachal & Moga. Data's are compared with estimated angles in order to improve the results.

Table no:2 **Comparison of PMU estimate Angles**

Places	of	PMU	Actual
deployment	of	estimated	Angles
PMU		angle	
Dadri - Moga.		11.47	12.68
Kanpur - Dadri		11.62	13.44
Kanpur - Moga		23.09	22.10
Vindhyachal	-	32.97	35.23
Dadri			
Vindhyachal	-	21.35	23.49
Kanpur			
Vindhyachal	-	44.44	46.12
Moga			

Synchrophasors Technology

Synchrophasors are the phasor measurements taken synchronously at the same instant of time. Phasor is a complex number that represent both magnitude and phase angle of electricity waves as shown in figure.

Further to above four more places have been selected

- (1).400 KV substation Kishnapur
- (2) 400 KV substation Hissar
- (3) 400 KV substation Bassi
- (4) 400 KV substation Agra

Advantages Of adopting Synchrophasor Technology

(1) Wide Area Measure – whole country

Power flow parameters can be visualize and monitored and control at National Load Dispatch Center –Delhi by end of 2012, Thirty seven thousand (37,000 MW) flow would be controlled by NLDC and 1,00,000 MW by end year 2017.

Stage 2 Advantages:

(2) POWER QUALITY MONITORING

- (a) Unbalance
- (b) Harmonics
- (c) Sag & swell
- (d) Monitoring Interruptions
- (3) System Integrated Protection Schemes
- (4) Network Model Validation & Parameters Finalization for better Grid Management System.

 Stage 3:

- (1) Increase the size of observation & control
- (2) State Estimator

Conclusion:

This technology provides wide area time synchronized and time stamped measurements commonly known's synchrophasor measurements. Present existing SCADA/EMS measurements has capability to provides only steady state view of grid / system, where as synchrophasor technology provides wide area dynamic real time visualization , monitoring safety , security of the grid in effective manner with advancement in communication in IT technology and ever increasing need of complex grid solutions visibility of power system of synchrophsor initiatives are been taken in Indian grid to face the future challenges. Grid is marching one step ahead towards smart grid.

REFERENCES

- 1 WWW.CEA.GOV.IN
- 2 INDIAN ELECTRICITY GRID CODE 2010
- 3 WWW.POWER GRID INDIA .COM
- 4 UNIFIED REAL TIME DYNAMIC STATE MEASUREMENT SYSTEM.
 5POWER GRID CORPORATION OF INDIAA LIMITED.

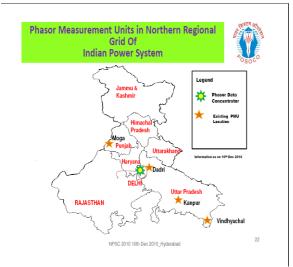


Fig 1

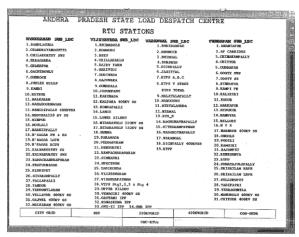


Fig 2

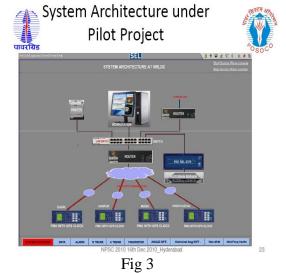


Fig 4

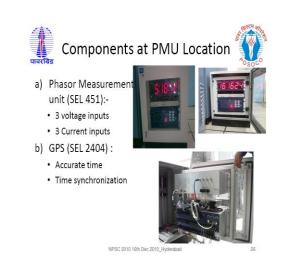


Fig 5

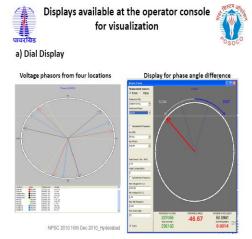
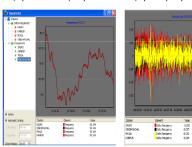


Fig 6


Displays available at the operator console for visualization

b) Trend Display

Display for absolute frequency

Display for frequency difference

NPSC 2010 16th Dec 2010 Hyderabad

Fig 7

Note: Plots are Based on 40 mili sec PMU data.

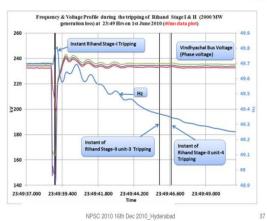


Fig 8

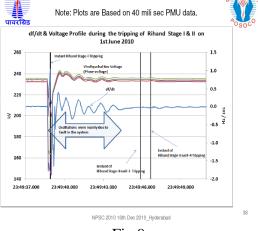


Fig 9

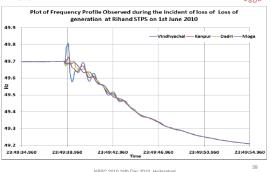


Fig 9

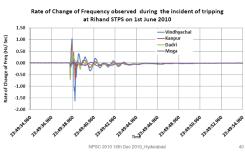


Fig 10

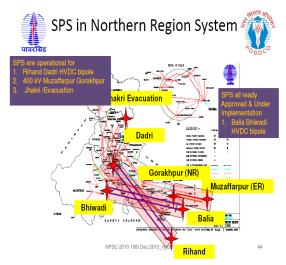


Fig 11

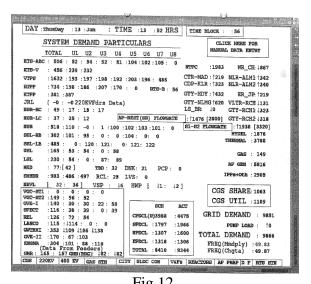


Fig 12

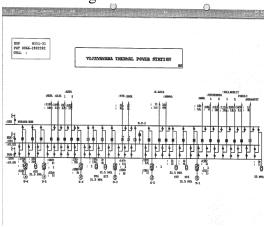


Fig13 220KV BUST VOLT: : 224 220KV BUS2 VOLT: : 223 220KV BUS1 FREQ: :49.83 220KV BUS2 FREQ: :49.82

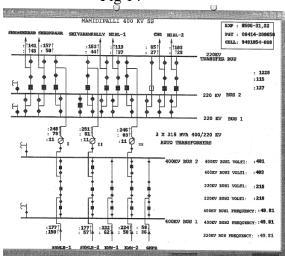


Fig 15

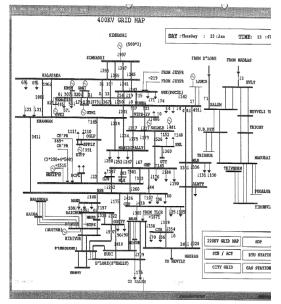


Fig 16

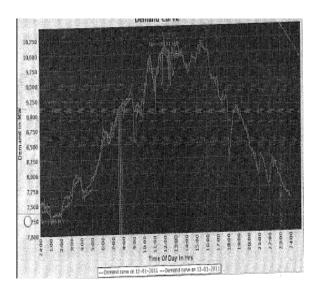


Fig 17