
AIJREAS VOLUME 1, ISSUE 3 (2016, March) (ISSN-2455-6300) Online

AAAnnnvvveeessshhhaaannnaaa ’’’sss IIInnnttteeerrrnnnaaatttiiiooonnnaaalll JJJooouuurrrnnnaaalll ooofff RRReeessseeeaaarrrccchhh iiinnn EEEnnngggiiinnneeeeeerrriiinnnggg aaannnddd AAApppppplll iiieeeddd SSSccciiieeennnccceeesss

AAAnnnvvveeessshhhaaannnaaa ’’’sss IIInnnttteeerrrnnnaaatttiiiooonnnaaalll JJJooouuurrrnnnaaalll ooofff RRReeessseeeaaarrrccchhh iiinnn EEEnnngggiiinnneeeeeerrriiinnnggg aaannnddd AAApppppplll iiieeeddd SSSccciiieeennnccceeesss

EEE---mmmaaaiii lll ::: anveshanaindia@gmail.com , WWWeeebbbsssiiittteee ::: www.anveshanaindia.com|

67

Performance and Productivity in Parallel Computing:

A Case Study from the Past to the Future

Dr. Jangala. Sasi Kiran

Professor in CSE & Dean-Academics,

Farah Institute of Technology, Chevella, R.R. Dt –
Telengana, India – 501503

sasikiranjangala@gmail.com

Dr.G.Charles Babu

 Professor in CSE

Farah Institute of Technology, Chevella, R.R. Dt –
Telengana, India – 501503

charlesbabu26@gmail.com

 M. Kavya

Asst Professor in CSE

Farah Institute of Technology, Chevella, R.R. Dt –
Telengana, India – 501503

kavyamunga@gmail.com

 Md. Karimmudin

Professor in CSE

Farah Institute of Technology, Chevella, R.R. Dt –
Telengana, India – 501503

mohammad.k1777@gmail.com

Abstract:

Reproduction of a computer is a decisive

technology that plays a major role in several areas in

science and engineering. The companies which are

working on HPC (High Performance Computing) are

simply shifting their work from the logical computing

market toward the big business high-performance

computer market where the furthermost demand is

for money-making of midrange performance

computers. In developing High Performance

Computing software, time to solution is an important

metric. This metric is comprised of two main

components: The human effort required developing

the software, plus the amount of machine time

required to execute it. To date, little experiential

work has been made to study the first component: the

human endeavor required and the effects of

approaches and practices that may be used to reduce

it. In this paper, we describe a sequence of studies

that address this problem and a survey is presented

since beginning of parallel computing up to the use of

present state-of-art multi-core processors.

Key Terms: Parallelism, High Performance

Computing, Modularity & Multi core processor.

I. INTRODUCTION

Applying more than on processors to a single

computational problem gave rise to parallel and

Distributed Computing which opened up the doors

for many computing possibilities for researchers and

High Performance Computing (HPC) community. In

the journey of Parallel and Distributed Computing,

several milestones have been achieved and deployed

using contemporary technologies like Dedicated

Parallel Machines, SMP clusters, Super Computing,

Network of Workstations, Commodity Clusters etc.

to today’s Grid and Cloud Computing. Parallel
programming is more difficult than sequential

programming because of the additional issues of

determinism, synchronization, communication costs,

load imbalances and performance portability that

must be addressed by the programmer. As a result,

productivity of parallel programming efforts tends to

be low. Recognizing the importance of high

productivity, in the early days of parallel computing

researchers aimed at automatic parallelizing

compilers. However, after decades of very

stimulating research [1, 2, 3, 4, 5], it has become

clear that although some of the tools produced can

indeed extract almost all the parallelism from the

given code, a from-scratch parallel reformulation is

often required to attain higher performance.

Moore’s Law [6] states that the number of

transistors that can be placed on a microchip at a

reasonable price will double approximately every two

years. Importantly, as the number of transistors

grows, the latency of transistor switching has not

improved at nearly the same rate. In order to continue

to improve the total throughput of computational

machines, one solution class is to increase the

parallelism of that computation. Intel’s founder
Andrew Grove thinks this is the inflection point [7]

“the time in the life of a business when its

fundamentals are about to change”. For more than a

decade, lots of efforts have spent for the development

of parallel computing in both hardware and software.

With the lack of heavy financial supports, research

and commercial in HPC areas have slowly decreased

in the past few years [8, 9]. The announcement of

DOE (Department Of Energy) decision on the ASCI

program has made a turning curve of high-

http://www.anveshanaindia.com/
http://anveshanaindia.com/

AIJREAS VOLUME 1, ISSUE 3 (2016, March) (ISSN-2455-6300) Online

AAAnnnvvveeessshhhaaannnaaa ’’’sss IIInnnttteeerrrnnnaaatttiiiooonnnaaalll JJJooouuurrrnnnaaalll ooofff RRReeessseeeaaarrrccchhh iiinnn EEEnnngggiiinnneeeeeerrriiinnnggg aaannnddd AAApppppplll iiieeeddd SSSccciiieeennnccceeesss

AAAnnnvvveeessshhhaaannnaaa ’’’sss IIInnnttteeerrrnnnaaatttiiiooonnnaaalll JJJooouuurrrnnnaaalll ooofff RRReeessseeeaaarrrccchhh iiinnn EEEnnngggiiinnneeeeeerrriiinnnggg aaannnddd AAApppppplll iiieeeddd SSSccciiieeennnccceeesss

EEE---mmmaaaiii lll ::: anveshanaindia@gmail.com , WWWeeebbbsssiiittteee ::: www.anveshanaindia.com|

68

performance computing areas. Although ASCI main

vision is to advance the DOE (Department Of

Energy) defense program computational capabilities

to meet future needs of stockpile stewardship, it

surely will accelerate the development of high-

performance computing far beyond what may be

achieved in the absence of this program. The purpose

of this study was to measure programmer

productivity, thus defined, over several years starting

in 2002, the beginning of the HPCS (High

Performance Computing Systems) initiative. The

study was primarily focused on two approaches to

parallel programming: the SPMD (single program

multiple data) model as exemplified by C/MPI

(message-passing interface), and the APGAS

(asynchronous partitioned global address space)

model supported by new languages such as X10

(http://x10-lang.org), although differences in

environment and tooling were also studied.

The Rest of the paper is organized as follows. In

Section 2, we studied and analyzed several challenges

faced by current and future generation large scale

systems in parallel computing. In Section 3, we

discuss parallel programming languages and tools for

shared and distributed memory. In Section 4, we

outline the levels of parallelism and in Section 5, we

outline the modularity and the composition in parallel

computing. Finally, Section 6 contains our conclusion

with the super scope.

II. RELATED WORK

Two main components make up the time to

solution metric. The first component is the human

effort/calendar time required to develop and tune the

software. The second component is the amount of

machine time required to execute the software to

produce the desired result. Metrics and even

predictive models have already been developed for

measuring the code performance part of that

equation, under various constraints (e.g. [10, 11]).

However, little empirical work has been done to date

to study the human effort required to implement those

solutions. Only a handful of empirical studies have

been run to examine factors influencing variables

such as development time [12] or the difficulties

encountered during HPC development [13]. Some

authors have commented that "little work has been

done to evaluate HPC systems' usability or to develop

criteria for such evaluations"[13]. As a result, many

of the practical decisions about development

language and approach are currently made based on

anecdote, “rules of thumb,” or personal preference.

Several prior studies[14, 15] have used lines of code

as the principal metric to determine effort required to

compare parallel programming models with the

assumption that fewer lines of code implies less

effort.

The challenges faced by current and future-

generation large-scale systems include: 1) Frequency

wall: inability to follow past frequency scaling trends

due to power and thermal limitations, 2) Memory

wall: inability to support a coherent uniform-memory

access model with reasonable performance thereby

leading to severe no uniformities in latency and

bandwidth for accessing data in different parts of the

system, and 3) Scalability wall: inability to utilize all

levels of available parallelism in the system, e.g.,

clusters, SMPs, multiple cores on a chip, co-

processors, SMT, and SIMD levels. It is now

common wisdom that the ongoing increase in

complexity of large-scale parallel systems to address

these challenges has been accompanied by a decrease

in software productivity for developing, debugging,

and maintaining applications for such machines [16].

This is a serious problem because current trends for

next generation systems, including SMP on-a-chip

and tightly coupled “blade” servers, indicate that

these complexities will be faced not just by

programmers for large-scale parallel systems, but

also by mainstream application developers.

In the area of scientific computing, the

programming languages community responded to

these challenges with the design of several

programming languages, including Sisal, Fortran 90,

High Performance Fortran, Kali, ZPL, UPC,Co-Array

Fortran, and Titanium. The ultimate challenge facing

this community is supporting high-productivity, high-

performance programming: that is, designing a

programming model that is simple and widely and yet

efficiently implementable on current and proposed

architectures without requiring “heroic” compilation

efforts. During the same period, significant

experience has also been gained with the design and

use of commercial object oriented languages, such as

Java and C#. These languages, along with their

accompanying libraries, frameworks and tools, have

enjoyed much success in improving productivity for

commercial applications. While the productivity

benefits of commercial object oriented languages are

well established for single-threaded applications, the

results for concurrent applications have been

decidedly mixed. Despite much effort [17], attempts

to precisely define the semantics of the memory

model for Java that is, the concurrent interactions

between multiple threads and a single shared global

heap continue to be very complicated technically and

arguably beyond the reach of most practicing

programmers. With some notable exceptions (e.g.JSR

http://www.anveshanaindia.com/
http://anveshanaindia.com/

AIJREAS VOLUME 1, ISSUE 3 (2016, March) (ISSN-2455-6300) Online

AAAnnnvvveeessshhhaaannnaaa ’’’sss IIInnnttteeerrrnnnaaatttiiiooonnnaaalll JJJooouuurrrnnnaaalll ooofff RRReeessseeeaaarrrccchhh iiinnn EEEnnngggiiinnneeeeeerrriiinnnggg aaannnddd AAApppppplll iiieeeddd SSSccciiieeennnccceeesss

AAAnnnvvveeessshhhaaannnaaa ’’’sss IIInnnttteeerrrnnnaaatttiiiooonnnaaalll JJJooouuurrrnnnaaalll ooofff RRReeessseeeaaarrrccchhh iiinnn EEEnnngggiiinnneeeeeerrriiinnnggg aaannnddd AAApppppplll iiieeeddd SSSccciiieeennnccceeesss

EEE---mmmaaaiii lll ::: anveshanaindia@gmail.com , WWWeeebbbsssiiittteee ::: www.anveshanaindia.com|

69

166 [18]), research on concurrency in such languages

has not addressed the issue of delivering the scalable

performance that is required by large-scale parallel

systems.[19, 20] describe an experiment in which

undergraduates were trained in either C/MPI, UPC

(Unified Parallel C), or (a very early version of) X10

and then attempted to parallelize the string-matching

algorithm of SSCA 1 (Scalable Synthetic Compact

Application 1), as described in [21] Average time to

completion was approximately 510 minutes in

C/MPI, 550 minutes in UPC, and 290 minutes in

X10. When the differences in code-execution time

during testing were removed, these times were

approximately 360 minutes for C/MPI, 390 minutes

for UPC, and 180 minutes for X10. Interpretation of

this roughly two fold productivity gain was

somewhat complicated, however, by the absence of

clear success criteria for code completion. In a

subsequent study, [22] added the Eclipse

programming environment to the tools available to

X10 programmers. Participants in this study were

more experienced, having had some parallel

programming training in earlier course work. A

productivity gain for X10 and Eclipse over C/MPI

was found here as well, but computing the size of this

gain was complicated by the fact that only one of the

seven C/MPI participants completed the task (in 407

minutes) vs. five of the seven X10 participants in an

average of 321 minutes. X10 is an experimental new

language currently under development at IBM in

collaboration with academic partners. The X10 effort

is part of the IBM PERCS project (Productive Easy-

to-use Reliable Computer Systems) whose goalisto

design adaptable scalable systems for the 2010

timeframe, with a technical agenda focused on

hardware software co-design that combines advances

in chip technology, computer architecture, operating

systems, compilers, programming environments and

programming language design. The main role of X10

is to simplify the programming model so as to

increase the programming productivity for future

systems like PERCS, without degrading performance.

Combined with the PERCS Programming Tools

agenda [23], the ultimate goal is to use a new

programming model and a newest of tools to deliver

a 10× improvement in development productivity for

large-scale parallel applications by 2010.To increase

programmer productivity, X10 starts with a state-of-

the-art object-oriented programming model, and then

raises the level of abstraction for constructs that are

expected to be amenable to automatic static and

dynamic optimizations by 2010 specifically.

III PARALLEL PROGRAMMING

LANGUAGES AND TOOLS

Parallel programming languages and tools

largely depend on the underlying architecture being

used to run parallel application, viz., shared memory

architecture and distributed memory architecture.

3.1 Languages and Tools for Shared Memory

Architectures:

OpenMP (Multi Processing) is a popular

programming option on shared memory systems.

OpenMP programming standards consist of compiler

directives that define and identify parallel region of

the code that can run as threads. Some programs use

proprietary compiler directives to form parallelism

through threads whereas OpenMP (Multi Processing)

provides a higher level of abstraction to programmers

and create parallelism in a fork-and-join

programming model. In this model program begins

sequential execution as a single process or thread.

When the directive for parallel region is found, a

single thread becomes master thread and creates

several other slave threads to execute parallel tasks.

At the end of parallel region, all threads are

synchronized & joined to produce clubbed results. In

OpenMP (Multi Processing) programming paradigm,

all threads use shared memory which creates

possibility of memory contention among threads.

This issue is resolved by implementing memory

coherence protocol for data consistency. The other

popular programming options for shared memory

systems are Portable Operating System Interface

(POSIX) Threads and Compute Unified Device

Architecture (CUDA).

3.2 Languages and Tools for Distributed Memory

Architectures:

The communication among two or more

processors in distributed memory systems are carried

out through Message Passing. MPI is a popular

programming option for distributed memory systems.

MPI (stands for Message Passing Interface) is a

specification of message passing libraries for the

researchers, developers and users. The goal of the

Message Passing Interface is to provide portable,

efficient and flexible standard for a wide use of

writing message passing programs. The first version

of MPI (later called MPI-1) came in existence in

1994. The second version MPI-2, included some

more programming issues, was released in 1996 [24,

25].

MPICH is a portable implementation of the full

MPI-1 specification for a wide variety of parallel and

distributed computing environments. MPICH

contains, along with the MPI library itself, a

programming environment for working with MPI

http://www.anveshanaindia.com/
http://anveshanaindia.com/

AIJREAS VOLUME 1, ISSUE 3 (2016, March) (ISSN-2455-6300) Online

AAAnnnvvveeessshhhaaannnaaa ’’’sss IIInnnttteeerrrnnnaaatttiiiooonnnaaalll JJJooouuurrrnnnaaalll ooofff RRReeessseeeaaarrrccchhh iiinnn EEEnnngggiiinnneeeeeerrriiinnnggg aaannnddd AAApppppplll iiieeeddd SSSccciiieeennnccceeesss

AAAnnnvvveeessshhhaaannnaaa ’’’sss IIInnnttteeerrrnnnaaatttiiiooonnnaaalll JJJooouuurrrnnnaaalll ooofff RRReeessseeeaaarrrccchhh iiinnn EEEnnngggiiinnneeeeeerrriiinnnggg aaannnddd AAApppppplll iiieeeddd SSSccciiieeennnccceeesss

EEE---mmmaaaiii lll ::: anveshanaindia@gmail.com , WWWeeebbbsssiiittteee ::: www.anveshanaindia.com|

70

programs. The programming environment includes a

startup mechanism and a profiling library for

studying the performance of MPI programs. Interface

specifications have been defined for C/C++ and

FORTRAN programs. MPICH2 is a portable

implementation of the full MPI-2specification. Both

portable implementations also include:

 Tracing and log file tools based on the MPI profiling

interface, including a scalable log file format

(SLOG).

 Parallel performance visualization tools (Jumpshot).

 Extensive correctness and performance tests.

The other popular programming options for

distributed memory systems are Unified Parallel C

(UPC) and Fortress. Both the programming models,

viz., OpenMP and MPI, can be used within same

program as hybrid MPI+ OpenMP (Multi Processing)

paradigm which is suitable for architectures

consisting of both shared and distributed memory

such as cluster of multi-core processors [26, 27]. MPI

can be used to provide process level parallelism

across nodes while OpenMP can be used to

implement loop level parallelism within anode by

using compiler directives [28].

IV APPROACHES AND LEVELS OF

PARALLELISM

A sequential program is one which runs on a

single processor and has a single line of control. To

make many processors collectively work on a single

program, the program must be divided into smaller

independent chunks so that each processor can work

on separate chunks of the problem. The program

decomposed in this way is a parallel program.

A wide variety of parallel programming

approaches are available. The most prominent among

them supported on PARAM are the following:

 Data Parallelism

 Process Parallelism

 Farmer and Worker Model

All these three models are suitable for task level

parallelism. In case of data parallelism, divide and

conquer technique is used to split data into multiple

sets and each data set are processed on different PEs

by using the same instruction. This approach is

highly suitable for processing on machines based on

SIMD model. In case of process parallelism, a given

operation has multiple (but distinct) activities, which

can be processed on multiple processors. In case of

farmer and worker model, job distribution approach

is used; one processor is configured as master and all

other remaining PEs are designated as slaves; master

assigns job to slave PEs and they on completion

informs the master which in turn collects results. The

above approaches can be utilized in different levels of

parallelism.

4.1 Levels of Parallelism

Levels of parallelism decided based on the lumps

of code (grain size) that can be a potential candidate

for parallelism. Table 1 lists categories of code

granularity for parallelism. Parallelism in an

application can be detected at several levels. They are

Large-grain (or task-level)

 Medium-grain (or control-level)

 Fine-grain (data-level)

 Very-fine grain (multiple instruction issue)

The different levels of parallelism are depicted in

Figure 1.

Figure 1: Levels Of Parallelism

Grain Code Comments/

Size item parallelized by

Large Program-Separate Programmer

Heavy weight process

Medium Standard One Page Programmer

 Function

Fine Loop/Instruction block Parallelizing

 Compiler

Very fine Instruction Processor

Table 1: Categories of Code Granularity

Among the four levels of parallelism, the

PARAM supports medium and large grain

parallelism explicitly. However instruction level of

parallelism is supported by the processor used in

building compute engine of the PARAM. For

instance, the compute engine in PARAM 8600 is

http://www.anveshanaindia.com/
http://anveshanaindia.com/

AIJREAS VOLUME 1, ISSUE 3 (2016, March) (ISSN-2455-6300) Online

AAAnnnvvveeessshhhaaannnaaa ’’’sss IIInnnttteeerrrnnnaaatttiiiooonnnaaalll JJJooouuurrrnnnaaalll ooofff RRReeessseeeaaarrrccchhh iiinnn EEEnnngggiiinnneeeeeerrriiinnnggg aaannnddd AAApppppplll iiieeeddd SSSccciiieeennnccceeesss

AAAnnnvvveeessshhhaaannnaaa ’’’sss IIInnnttteeerrrnnnaaatttiiiooonnnaaalll JJJooouuurrrnnnaaalll ooofff RRReeessseeeaaarrrccchhh iiinnn EEEnnngggiiinnneeeeeerrriiinnnggg aaannnddd AAApppppplll iiieeeddd SSSccciiieeennnccceeesss

EEE---mmmaaaiii lll ::: anveshanaindia@gmail.com , WWWeeebbbsssiiittteee ::: www.anveshanaindia.com|

71

based on i860 processor having capability to execute

multiple instructions concurrently.

Thread Level Programming

Threads are an emerging model for expressing

concurrency on multiprocessor and multicomputer

systems. In multiprocessors, threads are primarily

used to simultaneously utilize all the available

processors, whereas in uniprocessor or multicomputer

system, threads are used to utilize system resources

effectively by exploiting the asynchronous behavior

(opportunity for computation and communication

overlap) of threads.

Task Level Programming

PARAM as a MIMD distributed memory

machine offers a wide variety of interfaces for task

level parallelism. They include CORE (Concurrent

Runtime Environment), MPI (Message Passing

Interface), PVM (Parallel Virtual Machine). CORE is

a custom built interface whereas MPI is the standard

interface, which is available on most of the modern

parallel supercomputers. The various primitives

offered by them include task creation, deletion,

control, and communication. They offer both the

synchronous and asynchronous mode of

communication.

V MODULARITY VIA CONCURRENT

COMPOSITION

For high productivity in parallel programming,

one should be able to modularize the program. In

particular, it should be possible to compose

independently developed parallel modules into a

single parallel application (or into higher level

modules, composed hierarchically). Further, the

modules being composed should be allowed to

overlap their execution in time, and over processors.

Without this flexibility, one risks the danger of

fragmenting the set of processors (especially when a

large number of modules are being composed) and

certainly loses the ability to exploit adaptive overlap

of communication and computation across modules.

This is illustrated withal schematic and application

example below.

Consider the situation in Figure 2. A, B and C

are each parallel modules spread across all

processors. A must call B and C, but there is no

dependence between Band C. In traditional MPI style

programming, one must choose one of the modules

(say B) to call first, on all the processors. The module

may contain sends, receives, and barriers. Only when

B returns can A call C on each processor. Thus idle

time (which arises for a variety of reasons, including

load imbalance and critical paths) in each module

cannot be overlapped with useful computation from

the other, even though there is no dependence

between the 2 modules.

In contrast, with processor virtualization (and the

message-driven execution induced by it), A invokes

B on each processor, which computes, sends initial

messages, and returns to A. A then starts off module

C in similar manner. Now B and C interleave their

execution based on availability of data (messages)

they are waiting for. This automatically overlaps idle

time in one module with computation in the other, as

shown in the Figure. One can attempt to achieve such

overlap in MPI, but at the cost of breaking the

modularity between A, B andC. With processor

virtualization, the code in B does not have to know

about the code in A or C, and vice versa.

This phenomenon is illustrated in NAMD (Figure 2

(b)). The computation partitions atoms into a set of

cubic cells called “patches”. Interactions between

atoms in adjacent cells are computed by separate

virtual processors called the “pair wise compute

objects” in the Figure. The PME (Particle-Mesh

Ewald) module involves two 3D-FFTs (each with a

communication intensive transpose operation) over a

relatively small grid (192x144x144 in one case). By

concurrently composing the PME and force-

calculation modules, it becomes possible to use the

considerable latency of the transposes in the PME

algorithm with pair wise-force computations

adaptively. Neither partitioning of processors among

the two modules, nor sequencing their execution one

after the other will yield the same efficiency of

concurrent composition employed by NAMD.

Moreover, this efficiency is attained without any

coding by the programmer to juggle execution

between the two modules.

Figure 2 (a): Modularity and Adaptive

Overlapping: Schematic

http://www.anveshanaindia.com/
http://anveshanaindia.com/

AIJREAS VOLUME 1, ISSUE 3 (2016, March) (ISSN-2455-6300) Online

AAAnnnvvveeessshhhaaannnaaa ’’’sss IIInnnttteeerrrnnnaaatttiiiooonnnaaalll JJJooouuurrrnnnaaalll ooofff RRReeessseeeaaarrrccchhh iiinnn EEEnnngggiiinnneeeeeerrriiinnnggg aaannnddd AAApppppplll iiieeeddd SSSccciiieeennnccceeesss

AAAnnnvvveeessshhhaaannnaaa ’’’sss IIInnnttteeerrrnnnaaatttiiiooonnnaaalll JJJooouuurrrnnnaaalll ooofff RRReeessseeeaaarrrccchhh iiinnn EEEnnngggiiinnneeeeeerrriiinnnggg aaannnddd AAApppppplll iiieeeddd SSSccciiieeennnccceeesss

EEE---mmmaaaiii lll ::: anveshanaindia@gmail.com , WWWeeebbbsssiiittteee ::: www.anveshanaindia.com|

72

Figure 2 (b): Concurrent Composition of PME

and Force Computations in NAMD

Figure 2. Concurrent Composition

VI CONCLUSION AND FUTURE WORK

We presented a research agenda, and our

progress along it, which has been explicitly aimed at

improving programmer productivity and computer

performance on complex parallel applications. Many

large computational problems cannot be solved

within desired time constraint with sequential

computing (using a uniprocessor computer). To

achieve speedup in computing, more than one

processor (computer) is used to solve a large

problem, in form of Parallel and Distributed

Computing. The processors of Parallel Systems are

generally tightly coupled, i.e., use shared memory,

whereas the processors of Distributed Systems are

loosely coupled, i.e., use distributed memory and

may be scattered in wide geographical area.

Distributed systems such as Network of

Workstations, SMP Cluster etc. provide cost effective

solution to large computational problem then

dedicated parallel systems. The multi-core

architecture has put an opportunity and challenge to

exploit all available cores present in the processor.

Cluster of recent multi-core processors is as powerful

as earlier day’s supercomputers. Various parallel

programming languages and tools are available for

different computing environments. Due to improved

computing performance of parallel applications, the

demand of parallel programmers is expected to

increase in future. A performance model that

distinguishes between computation and

communication must be made explicit and

transparent. At the same time we believe that the

interaction between the concurrency constructs and

the place-based type system (including first-class

support for type parameters) will enable much of the

burden of generating distribution-specific code and

coordination of activities to be moved from the

programmer to the underlying implementation.

A future orchestration language, which will

allow the interactions among components to be

defined in a scripting language, will also improve the

reuse of parallel components and make the logic of

parallel applications more explicit.

VII ACKNOWLEDGEMENTS

I would like to express my cordial thanks to Sri. CA.

BashaMohiuddin, Chairman, Smt. Rizwana Begum-

Secretary and Sri. Touseef Ahmed-Vice Chairman,

Dr.M.Anwarullah, Principal - Farah Group of

Institutions, Hyderabad for providing moral support,

encouragement and advanced research facilities.

Authors would like to thank the anonymous

reviewers for their valuable comments. And they

would like to thank Dr.V. Vijaya Kumar, Anurag

Group of Institutions for his invaluable suggestions

and constant encouragement that led to improvise the

presentation quality of this paper.

VIII REFERENCES

[1]W. Blume, R. Eigenmann, et all:Improving the

effectiveness of parallelizing compilers. In

Proceedings of 7th International Workshop on

Languages and Compilers for Parallel Computing,

number 892 in Lecture Notes in Computer Science,

pages 141–154, Ithaca, NY, USA, and August 1994.

Springer-Verlag.

[2] D. Padua and M. Wolfe. Advanced Compiler

Optimizations for Super computers. Communications

of the ACM, 29(12):829-842, Dec 1986.

[3] S. Hiranandani, K. Kennedy, and C. Tseng.

Compiler support for machine independent parallel

programming in fortran-d. In J. Salz and P. Mehrotra,

editors, Compilers and Runtime Software for

Scalable Multiprocessors. Elsevier Science

Publishers B.V., 1992.

[4] S. Hiranandani, K. Kennedy, and C.-W. Tseng.

Compiler optimizations for fortran-d on mimd

distributed memory machines. In Proceedings of

Supercomputing 1991, Nov. 1991.

[5] R. Cytron, D.J. Kuck, and A. V. Veidenbaum.

The effect of restructuring compilers on program

performance for high-speed computers. Computer

Physics Communications,37(1–3):39–48, 1985.

[6] Moore’s Law: Electronics Magazine 19 April
1965

[7] Andrew Grove, Only the Paranoid Survive 1999

[8]Parallel Computing: Technology and Practice:

PCAT-94 Jonathan P. Gray, Fazel Naghdy.

[9] Dresden, Germany, Gerhard Joubert, Wolfgang

Nagel, Frans Peters, Wolfgang Walter. Parallel

Computing: Software Technology, Algorithms,

http://www.anveshanaindia.com/
http://anveshanaindia.com/

AIJREAS VOLUME 1, ISSUE 3 (2016, March) (ISSN-2455-6300) Online

AAAnnnvvveeessshhhaaannnaaa ’’’sss IIInnnttteeerrrnnnaaatttiiiooonnnaaalll JJJooouuurrrnnnaaalll ooofff RRReeessseeeaaarrrccchhh iiinnn EEEnnngggiiinnneeeeeerrriiinnnggg aaannnddd AAApppppplll iiieeeddd SSSccciiieeennnccceeesss

AAAnnnvvveeessshhhaaannnaaa ’’’sss IIInnnttteeerrrnnnaaatttiiiooonnnaaalll JJJooouuurrrnnnaaalll ooofff RRReeessseeeaaarrrccchhh iiinnn EEEnnngggiiinnneeeeeerrriiinnnggg aaannnddd AAApppppplll iiieeeddd SSSccciiieeennnccceeesss

EEE---mmmaaaiii lll ::: anveshanaindia@gmail.com , WWWeeebbbsssiiittteee ::: www.anveshanaindia.com|

73

Architectures & Applications: Proceedings of the

International Conference ParCo2003,

[10] A. Hoisie, O. Lubeck, H. Wasserman, F. Petrini,

and H.Alme, "A General Predictive Performance

Model forWavefront Algorithms on Clusters of

SMPs," Proc.ICPP. 2000, pp. 219-229.

[11] A. Snavely, L. Carrington, N. Wolter, J. Labarta,

R.Badia, and A. Purkayastha, "A Framework for

ApplicationPerformance Modeling and Prediction,"

Proceedingsof SC2002. Nov. 2002, IEEE.

[12] J. C. Browne, T. Lee, and J. Werth,

"ExperimentalEvaluation of a Reusability-Oriented

Parallel ProgrammingEnviron-ment," IEEE

Transactions on Software Engineering,16(2), 1990,

pp. 111-120.

[13] D. Szafron and J. Schaeffer, "An Experiment to

Measurethe Usability of Parallel Programming

Systems," Concurrency:Practice and Experience,

8(2), 1996, pp. 147-166.

[14] F. Cantonnet, Y. Yao, M. Zahran, and T. El-

Ghazawi,"Productivity Analysis of the UPC

Language," IPDPS2004 PMEO workshop. April

2004, Santa FE, NM.

[15] B. L. Chamberlain, S. J. Dietz, and L. Snyder,

"A comparativestudy of the NAS MG benchmark

across parallellanguages and architectures," SC'2000.

Nov. 2000.

[16] HPL Workshop on High Productivity

ProgrammingModels and Languages May

2004.http://hplws.jpl.nasa.gov/?

[17] W. Pugh. Java Memory Model and

ThreadSpecification Revision, 2004. JSR

133,http://www.jcp.org/en/jsr/detail?id=133?

[18] D. Lea. The Concurreny Utilities, 2001 JSR

166,http://www.jcp.org/en/jsr/detail?id=166?

[19] Ebcioglu, K., Sarkar, V., El-Ghazawi, T.,

Urbanic, J. 2006. An experiment in measuring the

productivity of three parallel programming

languages. In Proceedings of the Third Workshop on

Productivity and Performance in High-End

Computing: 30-36.

[20]Danis, C., Halverson, C. 2006. The value derived

from the observational component in an integrated

methodology for the study of HPC programmer

productivity. In Proceedings of the Third Workshop

on Productivity and Performance in High-End

Computing: 11-21.

[21]Bader, D. A., Madduri, K., Gilbert, J. R., Shah,

V., Kepner, J., Meuse, T., Krishnamurthy, A.

2006.Designing scalable synthetic compact

applications for benchmarking high productivity

computing systems.CTWatch Quarterly 2(4B);

http://www.cse.psu.edu/~madduri/papers/SSCA-

CTWatch06.pdf.

[22] Halverson, C. A., Swart, C., Brezin, J., Richards,

J., Danis, C. 2008. Towards an ecologically valid

study of programmer behavior for scientific

computing.In Proceedings of theFirst Workshop on

Software Engineering for Computational Science and

Engineering.

[23] V. Sarkar, C. Williams, and K. Ebcio˘glu.
Applicationdevelopment productivity challenges for

high-endcomputing. In Proceedings of Workshop

onProductivity and Performance in High-End

Computing(P-PHEC), February

2004.http://www.research.ibm.com/arl/pphec/pphec2

004-proceedings.pdf.

[24] Guo Liang Chen, Yun Quan Zhang, “Survey on

Parallel Computing,” Journal of Computer Science &

Technology, Sept. 2012, Vol.21, No. 5, pp. 665-673.

[25] Intel Multi-core Series Processors, Available

online at: http://www.intel.com/

products/processor/core2quad/.

[26] Rajkumar Sharma and PriyeshKanungo,

“Performance Evaluation of MPI and Hybrid

MPI+OpenMP Programming Paradigms onMulti-

Core Processors Cluster,” IEEE International

Conference on Recent Trends in Information

Systems, Jadavpur University,Kolkata, December

2011, pp. 137-140.

[27] R. Rabenseifner, “Hybrid Parallel Programming:

Performance Problems and Chances,” 45th CUG

Conference, Columbus, May 2003,Available online

at: http://www.cug.org.

[28] J. Roberts and S. Akhtar, “Multi-Core

Programming : Increasing Performance through

Software Multithreading,” Technical

Report,Available online

at:http://www.intel.com/intelpress.

AUTHOR’S PROFILE

Dr. J. Sasi Kiran Graduated in B.Tech

[EIE] from JNTU Hyd. He received

Masters Degree in M.Tech [CSE] from

JNT University, Hyderabad. He received

Ph.D degree in Computer Science from

University of Mysore, Mysore.

At present he is working as Professor in CSE and

Dean – Academics in Farah Institute of Technology,

Chevella, R.R. Dist Telangana State, India. His

research interests include Image Processing, Data

Mining and Network Security. He has published 45

research papers till now in various National,

International Conferences, Proceedings and Journals.

He has received best Teacher award twice from Farah

Group, Significant Contribution award from

Computer Society of India and Passionate Researcher

http://www.anveshanaindia.com/
http://anveshanaindia.com/
http://hplws.jpl.nasa.gov/
http://www.jcp.org/en/jsr/detail?id=133
http://www.jcp.org/en/jsr/detail?id=166
http://www.cse.psu.edu/~madduri/papers/SSCA-CTWatch06.pdf
http://www.cse.psu.edu/~madduri/papers/SSCA-CTWatch06.pdf
http://www.research.ibm.com/arl/pphec/pphec2004-
http://www.research.ibm.com/arl/pphec/pphec2004-
http://www.cug.org/

AIJREAS VOLUME 1, ISSUE 3 (2016, March) (ISSN-2455-6300) Online

AAAnnnvvveeessshhhaaannnaaa ’’’sss IIInnnttteeerrrnnnaaatttiiiooonnnaaalll JJJooouuurrrnnnaaalll ooofff RRReeessseeeaaarrrccchhh iiinnn EEEnnngggiiinnneeeeeerrriiinnnggg aaannnddd AAApppppplll iiieeeddd SSSccciiieeennnccceeesss

AAAnnnvvveeessshhhaaannnaaa ’’’sss IIInnnttteeerrrnnnaaatttiiiooonnnaaalll JJJooouuurrrnnnaaalll ooofff RRReeessseeeaaarrrccchhh iiinnn EEEnnngggiiinnneeeeeerrriiinnnggg aaannnddd AAApppppplll iiieeeddd SSSccciiieeennnccceeesss

EEE---mmmaaaiii lll ::: anveshanaindia@gmail.com , WWWeeebbbsssiiittteee ::: www.anveshanaindia.com|

74

Trophy from Sri. Ramanujan Research Forum, GIET,

Rajuhmundry, A.P, India.

Dr. G.Charles Babu received Ph.D in

computer science & engineering from

ANU in 2015, Masters in Software

Engineering from JNTU in 1999 and

B.Tech from KLCE in 1997. Presently

working as a Professor CSE department in Malla

Reddy College of Engineering (Autonomous). His

research interest includes Data Mining, Information

Retrieval, Cloud Computing and Image Processing.

He has published more than 25 papers in Various

international Journals

Ms. M. Kavya Graduated in B.Tech [CSE]

from JNTU Hyd. She received Masters

Degree in M.Tech from CBIT, HYD. Her

Interested areas are Digital Image

Processing and Artificial Intelligence.

Currently, she is working as an Assistant Professor in

Vidya Vikas Institute of Technology. She has

published research papers in various National,

International Conferences, Proceedings and Journals.

Mr.Md. Karimuddin graduated in B.Sc

and Received MCA & M.Tech from

JNTUH, Hyd. Presently working as

Director-Academics in Farah Institute of

Technology, Chevella from March 2015

to till date. His research interests include Data

Mining, Information Retrieval and Cloud Computing.

He has published research papers in various National,

International Conferences, Proceedings and Journals.

http://www.anveshanaindia.com/
http://anveshanaindia.com/

