

ANVESHANA'S INTERNATIONAL JOURNAL OF RESEARCH IN ENGINEERING AND APPLIED SCIENCES

ANALYSIS AND DESIGN OF PILE FOUNDATION AND ITS ABUTMENT FOR RAILWAY GIRDER BRIDGE

Mr. K. NAVEEN Department of Civil Engineering Ashoka Institute of Engineering & Technology. **B. GANESH** Asst. Professor, Department of Civil Engineering Ashoka Institute of Engineering & Technology.

Dr. ANAND GOYAL

HOD, Department of Civil Engineering Ashoka Institute of Engineering & Technology.

ABSTRACT

A Newly Broad Gauge Doubling Project Bridge was proposed between Jaroli – Jakhapura in Orissa, India under East Coast Railway. In this project a number of cross drainage structures are proposed, for canals, streams, etc. to cross the Railway. A deep study is made on one structure proposed at Bridge No.133 which is a major important bridge and the same is submitted as Project Thesis and which in later the drawings so developed using design are used for construction of bridge (On-going Project). All the necessary data was collected, studied, analyzed and designed to serve the purpose. But this thesis only deal with the design of abutment and its sub-structure, rest was also designed but to present the same become tedious.

INTRODUCTION

This thesis mainly deals with Analysis and Design of newly proposed Bridge No.133 which is a major important bridge on the proposed Broad Gauge Doubling Project, Jaroli – Jakhapura in Orissa, India under East Coast Railway at Chainage: 39078.2 m (39.078 Km), according to relevant Indian Railway Codes (IRS). Prior to Design the decision on levels and location of Abutments and Piers, Number of spans, Type of bridge & superstructure, type of sub-structure were decided in MOM meeting along with East Coast Railway Officials, RVNL Officials and Project Management and Consultancy (PMC). In this thesis only design of Abutment, Abutment Pile cap and Abutment piles are analysed and designed, rest were also designed but to present the same becomes Cumbersome but the concept being similar.

INVESTIGATION OF BRIDGES Need for Investigation

The aim of the investigation is to select a suitable site at which a bridge can be built economically, at the same time satisfying the demands of traffic, the stream, safety and aesthetics. The investigation for a minor bridge project should cover studies on technical

feasibility and economic considerations and should result in an investigation report. The success of the final design will depend on the thoroughness of the information furnished by the officer in charge of the investigation.

Selection of Bridge site

The characteristics of an ideal site for a bridge across a river are:

(a) A straight reach of the river.

(b) Steady river flow without serious whirls and cross currents.

(c) A narrow channel with firm banks.

(d) Suitable high banks above high flood level on each side.

(e)Avoidance of excessive underwater construction.

Investigation of proposed bridge site

Detailed Topographic survey of stream i.e., cross section at site of crossing 100m, 150m, 300m and 500m on both upstream and downstream of the stream. Longitudinal section of the stream along the flow line of the stream up to 500m on upstream and downstream. Local enquiry of floods for the past 20 years.

Preliminary Data to be collected

The investigation for a bridge should collect the following information:

(a) Name of the stream, road and the identification mark allotted to the crossing and location in Km to centre of crossing.

(b) Location to the nearest GTS (Great Trigonometric Survey) bench mark with its reduced level.

(c) Present and anticipated future volume and nature of traffic on the road at the bridge site.

(d) Soil profile along the probable bridge sites over the length of the bridge and approaches.

(e) Need for large scale river training works.

(f) Means of transport for materials.

(g) Availability of electric power.

HYDRAULIC AND HYDROLOGICAL **INVESTIGATION**

This document contains detailed hydrologic/hydraulic report for a major important bridge on the proposed "Jaroli -Jakhapura Doubling" at Chainage: 39078.2 m (39.078 Km) which consists of 3 spans 18.3 m P.S.C. girder for 25T loading. The P.S.C superstructure is supported by MCC pier & RCC abutment which in turn transmits the loads through pile cap to the bored cast-in- situ pile of 1200mm dia.

BASIC REOUIREMENTS

AFFLUX (h) is the rise in water level upstream of a bridge as a result of obstruction to natural flow caused by the construction of the bridge and its approaches. CAUSEWAY or Irish bridge in a dip in the Railway track which allows floods to pass over it. CLEARANCE (C) is the vertical distance between the water level of the design discharge (Q) including afflux and the point on the bridge superstructure where the clearance is required to be measured. DEPTH OF SCOUR (D) is the depth of the eroded bed of the river, measured from the water level for the discharge considered. DESIGN DISCHARGE (Q) is the estimated discharge for the design of the bridge and its appurtenances. HIGHEST FLOOD LEVEL (HFL) is the highest water level Known to have occurred.

DATA COLLECTION

Topographic Survey for the longitudinal section and cross section To get the longitudinal and cross section for the bridge having definite course of Stream, survey has been done in accordance with IRS :Bridge sub-structures & Foundation code 2003.

DATA FOR HYDROLOGICAL **CALCULATIONS:**

A comprehensive outline of hydrological investigations for collecting the necessary field data for the design of a bridge is given below. The nature and extent of investigations and data to be collected will depend upon the type and importance of the bridge. In the case of minor bridges, the scope of data collection may be reduced.

APPLICABLE STANDARDS/CODES

IRS specifications and codes followed for the hydraulic analysis and designing are given below.

IS: 1892-1962-Code of Practice for site investigations for foundations

IRS :Bridge sub-structures & Foundation code 2003.

METHODOLOGY FOR HYDROLOGIC ANALYSIS

Investigation and data collection regarding hydraulic design has been carried out to decide hydraulic parameters for new structure and also to check the adequacy of existing cross drainage structure. This hydrological/ hydraulic report has been prepared with objective

to assess the hydraulic and drainage capacity of the existing structure and check for requirement of additional drainage waterway to convey the peak flow of water satisfactorily.

Estimation of Design Discharge (Q)

The estimation of design discharge for waterway shall preferably be based,

wherever possible, on procedures evolved actual hydro meteorological from observations of the same or similar catchments.

Lacey's formula:

P_w=1.811 C√Q

Where, Pw = wetted perimeter in metres which can be taken as the effective width of waterway in case of large streams.

Q = design discharge in cum/sec.

C = a Coefficient normally equal to 2.67, but which may vary from 2.5 to 3.5 according to local conditions depending upon bed slope and bed material.

Estimation of Depth of Scour

In the case of natural channels flowing in alluvial beds where the width of waterway provided is not less than Lacey's regime width, the normal depth or Scour (D) below the foundation design discharge (Qf) level may be estimated from Lacey's formula as indicated below

$$\mathsf{D}=\mathsf{0.473}\left(\frac{Q_f}{f}\right)^{\!\!1/3}$$

Where due to constriction of waterway, the width is less than Lacey's regime width for Qf or where it is narrow and deep as in the case of incised rivers and has sandy bed, the normal depth of scour may be estimated by the following formula:

$$\mathsf{D} = 1.338 \left(\frac{\mathsf{Q}_{\mathsf{f}}^{2}}{\mathsf{f}}\right)^{1/2}$$

Where 'Q f' is the discharge intensity in cubic metre per second per metre width and f is silt factor.

LOADS AND STRESSES

Dead load is the weight of the structure itself together with the permanent loads carried thereon. For design of ballasted deck bridges, a ballast cushion of 400mm for BG and 300mm for MG shall be considered. However, ballasted deck bridges shall also be checked for a ballast cushion of 300mm on BG and 250mm on MG.

IRS Standard Live Loads

Railway Bridges including combined rail and road bridges shall be designed for one of the following standards of railway loading which are in Cl.2.3 "Rules Specifying the loads for Design of Superstructure and Sub-structure of Bridges and for assessment of the strength of Existing bridges-2008"

Dynamic Effect

The augmentation in load due to dynamic effects should be considered by adding a load Equivalent to a Coefficient of Dynamic Augment (CDA) multiplied by the live load giving the maximum stress in the member under consideration.

Forces due to curvature and eccentricity of Track

The horizontal load due to centrifugal force which may be assumed to act at a height of 1830mm for "25t Loading-2008" for BG, 3000mm for "DFC loading (32.5t axle load)" for BG and 1450mm for MG above rail level is:

C = (WV2) / (12.95 R)

Where, C= Horizontal effect in kN/m run (t/m run) of span.

W= Equivalent Distributed live load in kN/m run (t/m run).

V= Maximum speed in km per hour and R= Radius of the curve in m.

WIND PRESSURE EFFECT

Table 4.1 Wind Pressures

Broad Gauge bridges	1.47 kN/m2 (150 kg/m2)
Metre and Narrow Gauge Bridges 0.	98 <u>kN/m</u> 2 <u>(100kg/m2)</u>
Foot-bridges	0.74 kN/m2 (75 kg/m2)

FORCES AND EFFECTS DUE TO **EARTHQUAKE**

Zones I to III - Seismic forces shall be considered in case of bridges of overalllength more than 60m or spans more than 15m.

Zone IV & V - Seismic forces shall be considered for all spans

Design Seismic Coefficient

The design values of horizontal seismic

ANVESHANA'S INTERNATIONAL JOURNAL OF RESEARCH IN ENGINEERING AND APPLIED SCIENCES

coefficient (α h) shall be computed by the For piece

following expression

 α h = δ I α 0

 δ = a coefficient depending upon the soil-foundation,

Where,

I = a coefficient depending upon the importance of the structure

 $\alpha 0$ = Basic horizontal seismic coefficient

HYDRAULIC DESIGN CALCULATIONS

The Hydrological Data was supplied by RVNL from concerned Irrigation Authorities and Geo-technical Investigation was done by local Sub-Contractors both have been studied by Architecture and Engineering Consultancy (P) Ltd. and required parameters involved in design such as Depth of embedment of piles/pile group, Depth of scour etc. where been worked out prior to design.

-1-1		The second second
1	HFL	434.2 m
5	Discharge = (Data supplied by RVNL) Q	280,00%
8	Provided number of spans	3 Nos.
4.	Each span length	18.3 m
5	Linear water way	54.9 m
6	Unit discharge - Designed discharge/linear water way	5.1 m3/s/m
7	Silt factor	1.92
8	Normal scour depth- dam	3,19 m
	Maximum scour depth at abutment ~1.27x gam	4.0513 m
	= RL	430.149 m
	Maximum scour depth at pier =2.00x dsm	6.38 m
-1	= RL	427.82 m

STRUCTURAL CALCULATIONS

DESIGN

New Bridge No.133 is a major important bridge on the proposed "Jaroli – Jakhapura Doubling at Orissa State under East Coast Railway of India" at Chainage: 39078.2 m (39.078 Km). It consists of 3 spans 18.3 m P.S.C. girder for 25T loading. The P.S.C superstructure is supported by MCC pier & RCC abutment which in turn transmits the loads through pile cap to the bored cast-in- situ pile of 1200mm dia.

The MSL for pier has been taken as RL 427.300 m. The pile cap top of P1 is at RL .431.638 m which is lower than that of P2. For pier cap, pile cap & piles M35 grade of concrete and

For pier MCC of M25 grade concrete has been adopted.

In the design the critical load combinations, IRS standards have been considered.

Figure: 6.1 General details of Abutment and its Sub-structure

Load Calculation

= 216.00 T = 105.00T
= 210.00 T = 105.00T Ig:
= 105.00T
a.
= 0.00 m
- 6, 15 T/m
= 615 T/m
(5 <u>1x19.76</u>)/2 = 60.76 T 19
Fig: 6.1
= 0.00 m
2.5 = 17.082 T
ant 'A' in Fig. 6.1
2,6 = 17.082T
sent 'A' in Fig. 6-1
= 0.925 mi
= 2.312 T
5) = 0.433 T
= 2 744 T
A in Fig. 6.1

Seismic Loads:

Design Horizontal Seismic Coefficient 0 5 = 8 x l x 0

= 1.2°1.5°0.04 = 0.072 T/m²

ON ABUTMENT CAP

(ISSN-2455-6300) ONLINE

ANVESHANA'S INTERNATIONAL JOURNAL OF RESEARCH IN ENGINEERING AND APPLIED SCIENCES

Horizontal Seismic Force = 0.072x36.142

Distance of C.G. of Abut. Cap from B/O of Abut. Cap =0.9/2

This will act at RL 0.45 + 438.838 = RL

ON ABUTMENT

Horizontal Seismic Force = 0.072 x 45.48 =

Distance of C.G. of Abut. from Base of Abut. = (438.838 - 437.178) /2 This will act at RL 0.830 + 437.178 = RL

Forces due to earth pressure:

(Refer Ct 5.7.1 of IRS Sub structure & foundation code)

AEP at base of abutment wall = K + g

DYNAMIC INCREMENT ON EARTH PRESSURE

(Ref CI 5.12.6.1 of IRS Substructure & Foundation Code)

Active Earth Press	sure due to Bac	x 创			
Ø=	30,	1=0,	0;		
ð=	10,				
<u>g</u> ≈=0.072,	g.=0.036				
For the a LA	λ ≈ tan-i α i	/ 1+a v=	0.0694	radian =	3.976 degrees
For -ye a	$\lambda = tan + \alpha =$	/ 1+a v≠	0.0746	radian =	4.271 degrees

CALCULATION OF LOAD & MOMENT AND LOAD & MOMENT COMBINATIONS

All the calculated loads & their moments about centre line (CL) of pile cap base (acting at a distance from 'A' in Fig: 6.1) have been calculated and shown in Tabular form, Table 6.2(A) for Vertical Load and Table 6.2(B) for Longitudinal and Transverse Load.

The summary of all forces and moments which are calculated from Table 6.3(A), Table 6.3(B) and Table 6.3(C) at pile cap base are presented in Table 6.4.

arten els	and will be and a	Completion Movies I (Copy out a public for out and a set of the se							
		(*************************************	od-want and	-				12,61	
	Deep Land Dr. Sockstructure C. Sockstructure Sockstructure Dr. Annument Dr. Annument Dr. Annument Dr. Annument Dr. Annument	106.000 80.742 36.142 45.444 45.444 70.987 481.448	8 2011 8 301 8 3079 1 805 8 760 7 808 8 188	8.192 8.190 6.100 6.100 6.100 8.100 8.100 8.100 8.100 8.100	4.57 4.57 4.20 4.40 7.36 6.00	#1.25 #2.09 #7.92 #.38 *10.15 17.99 #.48			
7. 41+	Line Lined Cl. Longer start matter Tradium Branes Press	. 110.238	8.281	.4.100	-4.47	-101.21	3.128	11,824	
22.	60% LL Langer specificated Taxting Bulling Force	66.100	6.251	0.103	.447	.49,81	0.100	6.807	

2.1 2.3 1 2.3 1	Paul Path Concessor PPLL Longer Seat Social at MOL PPLL Longer space board	8.988	2322	1.112	2.17	33	
2.14 2.14	Austral Educto pressuore forme Bield for swelf Chy also been Chy also been						
iii.	Due to DL B.L.L.Bushwage Driebushweid Driebushweid Driebushweid						
h	VERVICES A STREET	111-111	112	2.122	14	(46).40 474.30	
*	Rawton Finisa Long Duarter (Tarwes Tensor Star) Stor - Do Asstrand Cea Michael Alter And Alter Alter	5.750 9.181 1.821 1.821 1.821 1.827 0.470 47.000	5,280 6,280 6,280 6,280 6,780 7,80 7,80 7,80 7,80 8,180 7,80 7,80 8,180 7,80 8,180 7,80 8,180 8,	6 156 6 150 6 160 6 160 8 180 8 180 8 180 8 180 8 180 8 180	40440140 40440140 805440 805	4.279 -1.199 -1.499 -1.404 -2.009 -2.	11111111

\$2	Torioverse Selamic Fortas								1.1.1.1		2010/01/01
527	Tuperstructure - TL						7.550	441.055	1.672	42,882	42,892
122	510L-01-						4.375	442 765	7.410	32.458	32.408
\$7.1	Abutment Cag						2.002	419 200	2.210	10.175	10.175
824	Dirt well				_		+ 230	445.263	4 005	6.033	8.000
5Z.5	Abutment						3.275	438.008	7.830	8.813	8.613
101	aning man						0.341	441,288	5.910	5.583	5.582
6.7.7	F10.080					-	- 94.97				
		_						-			
								438.218	8.900	91294	31204
123	90% LL <u>Longer(</u> intw) as an extent						4,185	445.482	10.005	42.217	42.217
\$23	87% PPLL Longerson hadeo						0.395	840,000	4.622	1.828	1,828
	Dynamic incoment of Earth										
6.4.4	Due to AEP on abutment		110.010	4.744	20.174	10.170					
	Due to AEP on cie-cap	0.352	420 000	4.201	-00170	-20.170					
1.5.4	Dow to DL & LL sumbarrance	2.542	439.139	-0.301	-33.068	-00.000		-			
	abutment Dow to OL & LL surch argue on	12.838	445.459	-8.981	-85,196	-46.188					
0.2.2	pig tes	41.213	435 859	4 491	-154.585	-104.588		-	_		
								-			
5	Wind Fortes							-	-		
6.5.	Cr Supershook/re						\$ 112	441,080	8.872	17.662	17.682
6.2-	Giv LL Longer 84eh loaded	-	-				6 150	448,483	10.885	82 328	42.028
								and included	interest in the second	- Contraction	

	abutment		1 - 1			
	AEP due to CL & LL surcharge on	60.363	47	4	00.215	88 362
	pile cap	50.502		125	39.210	00.002
1	Oue to Longitudinal Seismic					
	Forces up					
1	Superstructure - DL					
1	SIDL - DL	7.560	1.25	1	9.450	7.560
1	Abutment Cap	4,375	2	12	8,750	5 250
ł	Dirt wall	2.602	1.25	1	9.253	2.602
1	Abutment	1.230	1.25	1	1.537	1.230
	Wing wall	3.275	1.25	1	4.094	3.275
1	Pile cap	0.941	1.25	1	1.176	0.941
1	Due to Dynamic increment of	34-671	1.25	1	43.339	34,671
	Earth pressure					
l	AEP on abutment					
1	AEP on pile cap					
1	AEP due to DL & LL surcharge on					
1	abutment	8.050	4.7	4	15 221	# 05D
ł	AEP due to DL & LL surcharge on	0.535	17	4	16,235	0.000
1	pile cap	10.090	14		01.010	10.000
1	1 ofai Longitudinal Eorse (HL)	12.030	1.1		21.012	12.000
	Piorizontal Force in Transverse					
1	Citedial - Hi	41 215	\$7.	4	70.062	41 213
	Total Transverse Enroe (L(T)			1.5	10.000	41.210
1	Under trade sector restrant				601.001	246 750
4			++		001.001	340.700
		2 746	1.14	. 4	3.845	2.746

(ISSN-2455-6300) ONLINE

ANVESHANA'S INTERNATIONAL JOURNAL OF RESEARCH IN ENGINEERING AND APPLIED SCIENCES

	Manual cardinamal care with a	Maximal come with a
DESCRIPTION	Long Seismic +Vert. Seismic up	Tran Seismic +Vert, Seismic up
	Case 1Case 2	Case 3
_	A ULS CONDITION	
	2207.502043.78	
V(T)	1198.931097.88	2040.58
ML(I-m)	64.7925.91	1492.14
MT(T-m)	1200.681000-10	202.99
MR(I.m)	404.97561.05	1518.74
HL(I)	9.613.64	365.61
HI(I)	B SLS CONDITION	81.86
	1493.411392.55	
-	051.52011.94	
(40.7210.01	
V(T)	240 96246 76	1390.26
ML(I+m)	6 042 75	819.06
MT(T-m)	0.042.70	205.92
MR(I-m)		844,55
HL(I)		218.37
HT(T)		62.86

DESIGN OF PILE FOUNDATION

=	12.3 m
=	8.7 m
	1.8 m
	1.2 m
=	12 nos
= 43	7.178 m
= 43	5.428 m
= 43	5.378 m
= 42	1.079 m
* 41	6.878 m
	= = = = 43 = 43 = 43 = 42 = 41

PILE REACTION FOR DIFFERENT CASES

Table No: 6.6 ULS Condition -Summary of Forces & moments at Pile cap base

Description	Normal case	Normal case with + Long Setsmic +Vert. Setsmic up	Normal case with + Tran Seismic +Vert. Seismic up
	Case - 1	Case - 2	Case - 3
WT) ML(I-m)	2207.502 1196.933 64.786	2043 784 1097 682 25 915	2040.575 1492.141 282.991
MR(I-m) HL(I)	1200.682 404.972 9.612	1098.187 561.051 3.845	1518,739 365,613 91,660
HT(I) HR(I)	405.086	561.064	374.665

P10	119 832	111.022	115.421
P11	131.897	122.355	130.589
P12	143.962	133.687	145.756
Max Value	143.962	133.687	145.756
Min value	104.939	98.405	85.953
Self wt. of pile		51500 / L	
Max value with self with of	24.258	24.258	24.258
plic Min. value with self wit. of plie.	168.220	157 945	170.014
HR(I)	129,197	122.662	110.211
	20.078	28.897	18.937

Vertical load on each plie

Pile Reaction

$$\begin{split} &\mathbb{P}\mathbf{1}=(\nabla /\sum n)+(\mathsf{M}\mathsf{L}\times \mathsf{X}_{\mathsf{L}}/\sum \mathsf{X}_{\mathsf{L}}\mathbb{Z})+(\mathsf{M}\mathsf{T}\times \mathsf{y}_{\mathsf{L}}/\sum \mathsf{y}_{\mathsf{L}}\mathbb{Z})\\ &\mathsf{H}\mathsf{R}=\mathsf{H}\mathsf{R} /\Sigma \mathsf{n} \end{split}$$

Using above formula. Pite Reaction for 3 cases in SLS condition Le., Table No. Table No. 6.6 6 derived from Table No. 6.4 thas been worked out and presented in Table No. 6.9 below Table No. 6.9 SLS Condition _Pite Reaction for Timer cases.

Pile reaction (T)	Case - 1	Case - 2	Case - 3
P1	104.939	98.405	65 953
P2	117 004	109 737	101.121
F3	129.069	121.069	116.259
P4	141,135	132,401	131.457
P5	106.353	99.047	93,103
PE	116.418	110.380	106:271
27	130.483	121.712	123 439
PS	142.548	533.044	138 607
P9	107 767	00 600	100 253

Calculation of load carrying capacity of pile (Under Abut)

Soil exploration data under A2 is only available.

Hence the same date will be used for A1.

It is observed that N-value from RL 437.283 m to RL 416.283 m is very low Weathered rock strata starts at RL 416.283 m and continues up to 410.283 m.

$$Qa = Cu_1 Nc \frac{p B^2}{m} + \alpha Cu_2 \frac{p B L}{m}$$

4Fs

Calculating pile head deflection Ref. Clause C 4.2 IS 2911 (Part 1/Sec 2) : 2010 Page 16 For fixed head pile –

$$H (e + Zf)^{3}$$

deflection y = ----- x 10³
12 FI

H = Lateral load = 52.371T, Load Case V with seismic,

e = Cantilever length of pile = 332.1 cm, Zf = Depth to point of fixity = 692 cm,

E = Young's modules of pile material = 295804 Kg/cm2

I = M.I. of material of pile = 10182857 cm4

y= (52371(332 + 692)3)/(12 x 295804 x 10182857) = 1.56 cm

= 15.6 mm < 15.96 mm, Hence OK

(ISSN-2455-6300) ONLINE ANVESHANA'S INTERNATIONAL JOURNAL OF RESEARCH IN ENGINEERING AND APPLIED SCIENCES

DESIGN OF PILE CAP

alze ul rite uap	
Pile Cap dimension along Longitudinal direction	= 12.300 m
Pile Cap dimension along Transverse direction	= 8.700 m
Pile cap depth	= 1.800 m
Pile dia.	= 1,200 m
Clear cover	= 0.075 m
Distance of extre edge of pile cap in transverse direction	= 0.925 m
ULS factor for dead wt. of pile cap	= 1.250
Abutment section at bottom, Length = 6.850 m; Width = 1.600 m	

Computation for Moment

Table No. 6.10 ULS - Summary of Pile Reactions - Case -01

P9	152.90	P10	175.11	P11	197.31	P12	219.51
PS	150.65	P6	172.66	P7	195.06	PB	217.26
P1	148.41	P2	170.61	P3	192.81	P4	215.01

Figure: 6.3 Critical Section of Piles for Computing Moments Since, A to provided> A to required, the section is safe in Shear Computation of Two yay Shear/Punching Shear

The critical section breadth calculated as per Figure 6.4

Figure 6.4 Critical Section of Pile for Computing Punching Shear

Wt. of concrete	= 2.5 t/m ^a
Depth of pile cap	=18m
Max reaction on pile	= 221 3 T
Piledia	#1.2 m
Udia	

CALCULATION OF MOMENTS AND **LOAD & MOMENT COMBINATIONS** All the calculated loads & their moments about centre line (CL) of Abutment base (RL Bottom level of abutment = 437.178m) has been calculated and shown in Tabular form, Table 6.15(A) for Vertical Load and Table 6.15(B) for Longitudinal and Transverse Load. Combination of these loads and moments about pile cap base for Ultimate Limit State (ULS) Design and Serviceability Limit State (SLS) Design with appropriate Partial Safety Factors for three Cases have been considered and shown in Table 6.16(A), Table 6.16(B) and Table 6.16(C)

		VERTICAL LOAD						
<u>Şi</u> No	Description of load	Vertical load	Acting ata distance, from Win' Fig: 6.1	Distance of OG of abstract fran X in Fig. 6.1	Leveram	Long.mo g. fory <u>d</u> bad	Trans. East.	Trans. Mam.te vit. load
_		(T)	(11)	(11)	(m)	0.00	eT(m)	d-m)
1	2	3	4	5	6	7	8	9
1	Dead Load		-					
11	OL supstructive		1.1.1.2.2.2.					
12	OL SID.	105.000	5.280	5.750	-0.47	-49.35		
13	DL Abutment Ceo	60.762	5.280	5.750	-0.47	-28.56		
1.4	DL dit Cap	36.142	5.378	5.750	-0.97	-13.45		
1.5	DL Abutment	17.082	5.895	5.750	0.15	2.48		
1.5	DL wing well	45.484	5,750	5.750	0.00	0.00	_	
2	Live Lasd	13.067	7.526	5.750	1.78	23.20		
21	LL Longerspan loaded							
21.1	Tractive Braking Porce 50% LL Longerspan loaded							
221	Tractive/Braking Force	116.335	5.280	5.750	-0.47	-54.58	0.100	11.634
2.3	Foot Path Live Load						1000000	
231	FPLL Longerspan loaded	58.168	5.280	5.750	-0.47	-27.34	0.100	5.817
3	Active Earth pressure force							
		5 493	5.280	5.750	-0.47	-2.58		

Table No: 6.17 SUMMARY OF FORCES & MOMENTS AT ABUTMENT RACE

	Drive			
DESCRIPTION	Normal case	Normal case with + Long Seismic +Vert. Seismic up	Normal case with + Tran Seismic +Vert. Seismic u	
	Case 1	Case 2	Case 3	
		A ULS CONDITION		
3345220		463.64		
M(L)	605.69	-861.05	460.43	
ML(I-m)	-887.13	18.99	-819.47	
MT(I-m)	47.48	861.26	174.65	
MR(T-m)	888.40	2/5.6/	837.87	
HL(T)	219.70	0.75	180.34	
HT(T)	9.61	2.13	38.52	
		B. SLS CONDITION		
		-521.03		
		13.57		
V(T)	423.70	521.81	337.88	
ML(T-m)	-533.35	152.04	-506.93	
MT(T-m)	29.85	2.75	123.97	
MR(T-m)	534.19		521.87	
HL(T)	131.88		109.39	
HI(I)	6.04		28.19	

-				

ANVESHANA'S INTERNATIONAL JOURNAL OF RESEARCH IN ENGINEERING AND APPLIED SCIENCES

DESIGN OF ABUTMENT

The moment which are acting along abutment are shown in Figure 6.5

Figure: 6.5 Longitudinal and transverse moment Representation

Ac = B x D = 6.85 x 1.60 = 10.96 sq.m

Maximum Ultimate axial compressive Load., P max = 460.43 T

0.10 x fex A c= 0.1 x 35 x 10.96 x 100 = 3836 T > 460.43 T

Since the Ultimate axial load is less than 0.1fck Ac, abutment can be designed as Cantilever

slab and design will be done as per Ct 14.4.2.1.2 of IRS: Concrete Bridge Code.

Resultant moment MR = 837.87 T-m

Design moment per unit width = 837.87 / 6.85 = 122 T-min

CONCLUSIONS & FUTURE SCOPE

The following steps were followed for the above presentation:

 $\hfill\square$ Site investigation of the bridge location

i) Topographic survey for the stream and railway

ii) Geotechnical investigation for sub soil exploration at each support location.

□ Data collection (Rainfall, HFL, Topographic sheets etc) from concerned department.

□ Structural design and analysis.

i) Super structure: IRS – Bridge Rules and IRS-Concrete Bridge Rules are taken for analyzing the Bending Moments and Shear Forces and the following observations were made:

a) The maximum bending moment valves are observed in Normal case with Transverse Seismic & Vertical Seismic up load combination i.e., CASE-3 is taken for design in both ULS and SLS conditions.

ii) Sub structure: Manual analysis is carried out for design of Piles as per IS:2911 and IRS provisions in relevant codes.

 \Box Drawings are prepared based on the above results and are to be used for construction of the bridge.

□ The above bridge design i.e., 3 span of 18.3 m span consisting of 2 piers (P1, P2), 1 Abutment (A1) which are partly submerged in water and 1 Abutment (A2) not being affected by flood was designed and detailed drawing done satisfactorily.

□ It will take all the necessary Loads and Effects as prescribed in codes and design is done in accordance with it.

 \Box The drawings were drawn based upon this design and they are good for construction.

 \Box The design was made to Abutment (A1) only and same is followed to A2 as it is at higher level

□ The bridge was completely designed and detailed drawing was also prepared incl. sub structure and superstructure, but presenting the design in this thesis will become cumbersome viz., part of it is submitted

FUTURE SCOPE

1. After designing it was found that much of "material strength" is not utilized to full extent as sections are provided in additional. But due to advancement in the technology, we can do rigorous analysis quite easily and save material and constructional time.

2. Using Advnaced analysis programs like ANSYS, using FEM we can find the stresses at any point and thereby "Optimization" can be done by using 2 or more variables with as many as parameters.

3. The analysis i.e., Bending Moment, Shear Forces, etc. part are done according to code values, if done by Model Analysis better designs could be developed.

4. By FEM programs we can evaluate the stress variation quite easily and same is used for design of shape, thus saving material rather following standard tables.

ANVESHANA'S INTERNATIONAL JOURNAL OF RESEARCH IN ENGINEERING AND APPLIED SCIENCES

REFERENCES

1. IRS – CODE OF PRACTICE FOR PLAIN, REINFORCED & PRESTRESSED CONCRETE FOR GENERAL BRIDGE CONSTRUCTION, 2003

2. IRS - CODE OF PRACTICE FORTHE DESIGN OF SUB-STRUCTURES AND FOUNDATIONS OF BRIDGES, 2003

3. IRS - CODE OF PRACTICE FOR THE DESIGN OF STEEL OR WROUGHT IRON BRIDGES CARRYING RAIL, ROAD OR PEDESTRIAN TRAFFIC, 2003

4. IRS - PERMANENT WAY MANUAL, 2004

5. IRS - PERMANENT WAY MANUAL, 2004

6. IRS - Manual on the Design and Construction of Well and Pile Foundations, 1985

7. IRS – "BRIDGE RULES" - RULES SPECIFYING THE LOADS FOR DESIGN OF SUPER-STRUCTURE AND SUB-STRUCTURE OF BRIDGES AND FOR ASSESSMENT OF THE STRENGTH OF EXISTING BRIDGES

8. IS-2911 (Part1 –Section2) – 1979, Code of Practise for Design and Construction of Pile foundations

9. IS : 1892-1962-Code of Practice for site investigations for foundations

10. SP 16 (1980): Design Aids for Reinforced Concrete to IS:456-2000

11. IS 456-2000: Code of Practise for Plain and Reinforced Concrete

12. IRC 78: Code of Practise for Road Bridges

13. STRUCTURES DESIGN MANUAL for Highways and Railways (Third Edition), HIGHWAYS DEPARTMENT .

14. Journal - Indian practice on estimation of scour around bridge piers—A comment UMESH C KOTHYARI, Department of Civil Engineering, Indian Institute of UMESH C KOTHYARI, Department of Civil Engineering, Indian Institute of

15. Analysis and Design of Underpass RCC Bridge by Mohankar.R.H, Ronghe.G.N in INTERNATIONAL

JOURNAL	OF	CIVIL	AND
STRUCTURAI		ENGINE	ERING,
Volume 1, No 3	3. 2010		

(ISSN-2455-6300) ONLINE

ANVESHANA'S INTERNATIONAL JOURNAL OF RESEARCH IN ENGINEERING AND APPLIED SCIENCES

(ISSN-2455-6300) ONLINE

ANVESHANA'S INTERNATIONAL JOURNAL OF RESEARCH IN ENGINEERING AND APPLIED SCIENCES

