

SYNTHESIS AND STUDY OF A NOVEL HOMOLOGOUS SERIES 4 -(4'-N-ALKOXY BENZOYLOXY) B- PHENOXY ETHYL BENZOATES

JAGTAP M. S.

Department of Chemistry, Shri Jagdishprasad Jhabarmal Tibrewala University (JJT University) Jhunjhunu, Rajasthan, India

Abstract:

Novel homologous series 4 -(4'-n-alkoxy *benzoyloxy*) Phenoxy Ethvl ß-Benzoatesconsisted of eleven homologues. Methyloxy to propyloxy homologues do not show any mesomorphic behavior, while; the rest of the homologues show mesomorphic tetradecyloxy behavior. Octvloxv to homologues exhibit smectogenic and nematogenic characteristic, while butyloxy, pentyloxy, hexyloxy and hexadecyloxy homologue exhibit only nematogenic characteristics. Transition temperatures of homologues as observed and determined by *hot stage polarizing* microscope are proportional to number of carbon atoms in n-alkyl chain of left n-alkoxy terminal end group. Odd-even effect doesn't observe for *smectic-nematic* and *nematic-isotropic* transition curves showing phase behavior of a series. Smectic and nematic thermal stabilities are 187.2°C and 200.1° C respectively. Analytical data support the structures of the homologue molecules. A

CHAUHAN M.L.

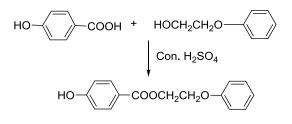
Department of Chemistry, Sheth P.T. Arts & Science College, Godhra, Gujarat Emai : <u>chauhanmukesh2@yahoo.com</u>

texture of nematic mesophase is threaded or schlieren type and that of a smectic phase is of smectic-A type. Liquid crystal properties of a series are compared with an another structurally similar isomeric homologous series. Smectic mesophase lengths vary from 4.0° C (C_{14})to 10.0° C (C_{10}) and nematic mesophase lengths vary from 4.0° C (C_4) to 14.0° C (C_6) with middle ordered melting type.

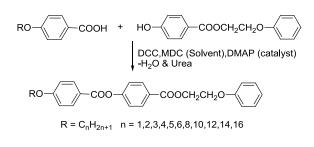
Keywords: Liquid crystal, Mesogen, Smectic, Nematic, Enantiotropy.

Introduction :

Exhibition of an intermediate state of a matter between crystalline solid state and isotropic liquid state in addition tothree well-known states of matter, termed as Liquid Crystal state. The resultant adhering intermolecular forces of attractions based upon molecular structure of a matter has direct relation with molecular rigidity and flexibilitycaused by rigid core and flexible core of a molecule. The present molecular structure of homologues of a



homologous series is constructed by linking three phenyl rings bridged through two central groups viz; -COO- and -COO-CH₂-CH₂-O- as rigid core and n-alkoxy –OR group which act as a flexible part of a molecule. Thus, present investigation is planned with a view to understand, establish and discuss a relation between molecular structure and liquid crystallinity of a substance as a consequence of resultant molecular rigidity and flexibility.


MATERIALS AND METHODS

p-n-alkoxy benzoic acids were prepared by the method of Gray and Winsor [1,2], Vora and Dave [3,4]Vogel [5,6]p-hydroxy β phenoxy ethyl benzoate is prepared by reacting p-hydroxy benzoic acid with corresponding freshly distilled 2-phenoxy ethyl alcohol in presence of concentrated sulphuric acid mixture.p-n-alkoxy benzoic acids dissolved in MDC with p-hydroxy β phenoxy ethyl benzoate is in portions with DCC & DMAP as catalyst by stirring reaction mixture. [7,8,9,10] Products were decomposed ,filtered, washed, dried and purified, till the constant transition temperatures obtained. p-Hydroxy benzoic acid, alkyl halides (R-X), 2-phenoxy ethyl alcohol, KOH, DCC, DMAP, MDC etc. required for synthesis were used as received except solvents which were dried and distilled prior to use. The synthetic route to the series is mentioned below in **Scheme -1**

P– Hydroxy –β-Phenoxy Ethyl benzoate.

(2) p -(p'-n-alkoxy benzoyloxy) β-Phenoxy Ethyl Benzoates

Scheme -1

Characterization

Some homologs as representative members of the series were selected for characterization of their structures by IR and 1HNMR techniques. IR spectra were recorded on Perkin Elmer spectrum GX and NMR were recorded using CDCl₃ as solvent. Microanalysis was performed on Perkin Elmer PE 2400 CHN analyzer. Transition and melting temperatures and

liquid crystal properties were investigated by using optical polarizing microscopy.

Analytical Data

Spectral Data

NMR in ppm for Hexyloxy Derivative. 0.9 (-CH₃ of $-OC_6H_{13}$ group), 1.14($-CH_{2}$ -)_n polymethylene group of $-OC_6H_{13}$), 4.6 (- $OCH_2 CH_2 of -OC_5H_{11}$), 3.5 ($-OCH_3$), 6.8 to 8.2 (mono and p-di-substituted phenyl ring).

NMR in ppm for Dodecyloxy Derivative. 0.94 ($-CH_3$ of $-OC_{12}H_{25}$ group), 1.12($-CH_{2^-}$)_n polymethylene group of $-OC_{12}H_{25}$), 4.5 ($-OCH_2$ CH₂ of $-OC_{12}H_{25}$), 3.5 ($-OCH_3$) 6.8 to 7.2 (p substituted phenyl ring). The NMR data are consistent with the molecular structure.

IR in cm-1 for Propyloxy Derivative. 770 polymethylene ($-CH_2$ -)_n group of $-OC_3H_7$, 850 p substituted phenyl ring, 1200, 1260 and 1685 (-COO ester group), 1600,1580 (phenyl ring). The IR data are consistent with the molecular structure.

IR in cm-1 for Octyloxy Derivative. 780 (polymethylene ($-CH_2$ -)n group of - OC_8H_{17}), 855 (p substituted phenyl ring), 1260 and 1605 (-COO ester group). 1605,1550 (phenyl ring).

IR in cm–1 for Dodecyloxy Derivative. 740 (polymethylene (-CH₂-)n group of - OC₁₂H₂₅), 840 (p substituted phenyl ring),

1210, 1260 & 1600 (-COO ester group.) 1580,1480 (phenyl ring). The NMR data are consistent with the molecular structure.

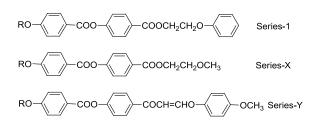
Table 1.

Elemental analysis for some derivatives.

Sr. No.	R = n- alkyl	Molecula r	Calculated %		Observed %	
	chain	Formula	С	Н	С	Н
1	Hexyl	$C_{28}H_{30}O_{6}$	72.7	6.4	71.9	6.5
			2	9	1	0
2	Octyl	$C_{30}H_{34}O_{6}$	73.4	6.9	72.2	6.9
			6	3	3	0

Result and Discussion:

n-Alkoxy Benzoic acids and 4-Hydroxy-βphenoxy ethyl benzoate are nonmesomorphic. However, on condensing the two nonmesomorphic components through DCC, the resultant homologous ester derivatives from Butyloxy to Hexadecyloxy give rise to mesomorphic behaviour. The methyl to propyl homologs nonmesomorphic. The are octyloxy, decyloxy, dodecyloxy, tetradecyloxy homologs are enantiotropically smectogenic in addition to nematogenic in character and the rest of the homologs are enantiotropic nematic only (Table 2). A phase diagram (Fig. 1) shows the phasebehavior through a graph of the number of carbon atoms present



in the left *n*-alkoxy terminalend group versus the transition temperatures as determined from an optical polarizing microscope equipped with a heating stage.

Table -2

Transition temperatures of series in 0C

Sr.	n-	Transition Temperatures in			
No	Alkyl	°C			
•	Grou	Smecti	Nematic	Isotropic	
	р	с			
1	Meth yl	-	-	204	
2	Ethyl	-	-	205	
3	Propy 1	-	-	212	
4	Butyl	-	203	207	
5	Penty 1	-	192	204	
6	Hexyl	-	188	202	
7	Octyl	182	190	195	
8	Decyl	175	185	192	
9	Dode cyl	177	184	195	
10	Tetra decyl	186	190	202	
11	Hexa decyl	-	193	204	

The phase diagram (Fig. 1) consists of threetransition curves: (1) First is the solidmesomorphic or isotropic transition curve, which adopts a zigzag path of falling and rising values with an overall descending tendency as the series is ascended and behaves in the normal established manner. (2) Second is the smectic-nematic transition curve, which initially falls, passes through maxima falling at the decyloxy homologue and then rise at the tetradecyloxy homologue with the not exhibition of an odd-even effect, and behaves in the usual manner. (3) Third is the nematic-isotropic transition curve, which follows a descending tendency as the series is ascended with a negligible falls of few degrees at the tetradecyloxy homologues and than rise till to hexadecyloxy homologues. Thus, all three transition curves behave in a normal established manner. The textures of the nematic phase are threaded or Schlieren and for the smectic phase of the type A or C. Variations in mesomorphic properties from homologue to homologue in the present series are observed. . Smectic mesophase lengths vary from $4.0^{\circ}C$ (C₁₄) to $10.0^{\circ}C$ (C_{10}) and nematic mesophase lengths vary from 4.0°C (C₄) to 14.0°C (C₆) with middle ordered melting type. The smectic-nematic

ANVESHANA INTERNATIONAL JOURNALOF RESEARCH IN PHARMACY AND LIFE SCIENCES Email Id: <u>anveshanaindia@gmail.com</u>, Website: <u>www.anveshanaindia.com</u>

and nematic-isotropic thermal stabilities are 187.2°C and 200.1°C, respectively. Thus, the present homologous series is predominantly nematogenic and partly smectogenic with a middle ordered melting type and a short range of liquid crystallinity. The mesomorphicproperties of the novel homologous series are compared with structurallysimilar known homologous series. The spectral and analytical data confirm the molecular structure of the homologues concerned. The nonmesomorphic behavior of the methyl to butyl homologues is attributed to the high crystallizing tendency, which arises from the shorter, less flexible *n*-alkoxy terminal endgroup. The butyl to hexadecyl homologue derivatives are liquid crystalline because the molecules set themselves at an angle less than 90° and resist thermal vibrations exposed upon them between two temperatures with or without lamellar packing of molecules in their crystal lattices. All such molecules have an ordered twodimensional array and exhibit either/both a smectogenic or/and a nematogenic mesophase. Thus, the molecules of the octyloxy to tetradecyloxy homologues have a layered molecular arrangement due to the lamellar molecular packing in their crystal lattices from the temperature t_1 to higher

temperature t_2 enantiotropically and on further continued heating up to a higher temperature t_3 , with a statistically parallel orientational molecular two-dimensional order. Thus, the smectic mesophase formation between t_1 and t_2 and the nematic mesophase formation between t_2 and t_3 occurred. The octyl, decyl, dodecyl and tetradecyl homologue derivatives have an absence of lamellar packing of the molecules with only a statistically parallel orientational order between t_1 and a higher temperature t_2 , enantiotropically showing only a nematogenic mesophase without smectogenic mesophase formation. The exhibition of a variation of mesomorphic properties from homologue to homologue in the novel series is attributed to the sequentially added methylene unit to the *n*alkoxy terminal end group. The overall mesomorphism induced from butyl to hexadecyloxy homologue derivatives is attributed to the suitablemagnitudes of anisotropic intermolecular forces end to end and lateral adhesion as a result of varying favorable molecular rigidity and flexibility against exposed thermal vibrations. The mesomorphic properties of the present homologous series (1) are compared with other structurally similar homologous series X [11] and Y [12] as shown in the **Fig. 2.**

Table-(3) Thermal stabilities in °C

Novel homologous series-1, and y are identical with respect to three phenyl rings and central bridge linking first and middle phenyl ring but series-X having only two phenyl ring. Moreover left n-alkoxy flexible terminal end group C_nH_{2n+1} i.e. RO- are the same for the same homologue from series to series. But remaining part of each series differs with each other. i.e. series-1,X and Y differs with respect to central bridges linking middle and third phenyl rings as and i.e. molecular rigidity differs but molecular flexibility remains unaltered. Homologous series-1, X and series Y are identical with respect to central bridge linking middle and right terminal end groups as differs with respect to-COO-CH₂-CH₂-OPH,-COOCH₂-CH₂-OCH₃ and-CO-CH=CH-PH-OCH₃ respectively for the same homologue from series to series i.e. molecular flexibility is altered keeping molecular rigidity unaltered for the same homologue from series to series. Thus, variations in mesogenic properties and the degree of mesomorphism observed, are depended upon the altering magnitudes of either molecular rigidity or the molecular flexibility among the

presently investigated series-1 and the homologous series - X an Y chosen for

Series	(1)	(X)	(Y)
Smectic-	187.2°C	179.0	118.0
isotropic	(C ₈ –	°C	°C (C ₇ –
	C ₁₀)	(C ₈ –	C ₁₄)
		C ₁₀)	1.7
Commencement	C ₈	C_8	C ₇
ofSmectic			
phase			
Nematic-	200.1	196.28	157.0
isotropic	°C	°C	°C (C ₅ –
	(C ₄ -	(C ₅₋	(C ₁₆)
	C ₁₆)	C ₁₆)	10/
Commencement	C ₄	C_5	C ₅
ofNematic-			
phase			

comparative study. Following **Table-3** represents some mesogenic properties like average thermal stabilities, commencement of mesophase or mesophases, mesophase lengths etc. to indicate effect of molecular structure on liquid crystal properties in terms of or as a consequence of altering molecular rigidity or flexibility; as under.

From above table-3, it is clear that,

 Presently investigated novel series -1, X and Y all series are nematogenic &smectogenic

- Smectic property commences from C₈ homologue of a series -1 and Series-X , whereas, Series – Y smectic commences from C₇homologue
- Nematic mesophase commences from C₄ homologue of series-1 whereas it commences from C₅ homologue of the series X and Y respectively.
- Total Mesophase length range of series-1 is relatively higher than series- X and Y.

Mesogenic characteristics difference of a substance varies with changing structural part of a molecules under The changing comparison. molecular structural part between series-1,X and Y is -COO-CH₂-CH₂-OPH,-COOCH₂-CH₂а OCH₃ and-CO-CH=CH-PH-OCH₃. Such induces differences differences into molecular polarity and polarizability as a consequence of molecular rigidity, keeping molecular flexibility unchanged for the same homologue from series-1 to series -X, which causes defense in the suitable magnitudes of anisotropic forces of intermolecular end to end attractions. commencement of mesophase, thermal stability, mesophase length range and other mesogenic properties.

Conclusions:

A novel homologous series consisted of three phenyl rings and two ester central bridges which acts as rigid core and two end groups contributing flexible core of the molecules, induces nematic type of mesomorphism with absence of smectic property by less than 50% homologues. series is middle ordered melting type with high thermal stability.

Group efficiency order derived on the basis of -

(i) thermal stability (ii) commencement of mesophase (iii) total mesophase length for smectic and nematic with reference to molecular rigidity/flexibility are as under

(i) Smectic:

Rigidity/Flexibility : -COO-CH₂-CH₂-OPH> -COOCH₂-CH₂-OCH₃ - > -CO-CH=CH-PH-OCH₃

Nematic

Rigidity/Flexibility : -COO-CH₂-CH₂-OPH> -COOCH₂-CH₂-OCH₃- >-CO-CH=CH-PH-OCH₃

(ii) Smectic:

Rigidity/Flexibility : $-COO-CH_2$ -CH₂-OPH> -COOCH₂-CH₂-OCH₃ - > -CO-CH=CH-PH-OCH₃ Nematic

Rigidity/Flexibility : $-COO-CH_2$ -CH₂-OPH> -COOCH₂-CH₂-OCH₃ - > -CO-CH=CH-PH-OCH₃ (iii) Total (Sm+N):- (Central group)

ANVESHANA INTERNATIONAL JOURNALOF RESEARCH IN PHARMACY AND LIFE SCIENCES Email Id: anveshanaindia@gmail.com, Website: www.anveshanaindia.com

RERF

AIJRPLS VOLUME 1, SPECIAL ISSUE (2016, Dec) (ISSN-2456-3889) Online ANVESHANA INTERNATIONAL JOURNALOF RESEARCH IN PHARMACY AND LIFE SCIENCES

1

 $-COO-CH_2-CH_2-OPH > -COOCH_2-CH_2-$ OCH₃ - > $-CO-CH=CH-PH-OCH_3$

Series-

Series - X Series - Y

- Suitable magnitudes of combined effect through molecular rigidity and flexibility can induce mesomorphism.
- Mesomorphism is very sensitive and susceptible to molecular structure.
- Present novel ester compounds may be useful in the study of binary systems and agricultural field.
- Presence of vinyl group is predominantly nematogenic.

Acknowledgement :

Authors acknowledge thanks to the S.P.T. Science College, Godhra for research facilities services as and when needed. Authors obliged to Dr. A. V. Dashy, Exprincipal M.V.M. Science College, Rajkot. Authors are also thankful to Dr. N.N. Vyas, Dr. V. R. Patel for their valuable helping hand and microscopic facility. Authors acknowledge thanks to Dept. of chemistry, Saurastra University, Rajkot for analytical and spectral services.

References :

[1] G.W. Gray and P.A. winsor (eds) Liquid crystals and plastic crystals. chapter - 6.2The role of Liquid crystals in life processes by G.T. stewart vol. 1 pp-308-326.

[2] Gray G. W., Winsor P. A., *Eds. Liquid crystals and Plastic crystals*, **1974**, **1**, Ellis Harwood Ltd., Chichester, p-10, England (b) Page-125.

[3] R. A. Vora, A.K. Prajapati, J.B. Kevat and K.K. Raw, Mesogenic Properties and the effect of 1,2,4,tri substitution on the central benzene nucleus of a three ring Mesogen. Liq. Cryst. 28 (**2001**) PP 983-998.

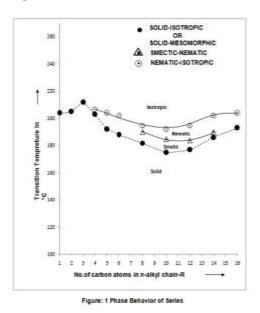
[4] Dave J.S. and Vora R.A. (**1970**) In J.F.Johnson and R.S. Porter, (Eds.), (Liquid crystals and ordered fluids, plenum Press; New York, P. 477

[5] Vogel. A.I. "Textbook of practical organic chemistry", 5th ed. ELBS and Longmann, London.1989. p946.

[6] Lohar. J. M. and Doshi A.V. Acta Ciencia India vol. XVIII c, No.3,245(1992).

[7]R.B. Marathe and Doshi A.V. Accepted for publication, Mol. Cryst. Liq. Crystal Journal (Taylor and Francis) with its MW. No.229 dated 28-11-**2013**

[8]D.M. Suthar, A. A. Doshi and A.V.Doshi "study of Liquid crystalline state and


evaluation of its Properties through a Novel Homologue series" Mol. Cryst. Liq. Cryst. Vol. 582, PP. 79-87, **2013**.

[9]D.M. Suthar, A.A. Doshi and A.V.Doshi "synthesis and evaluation of a novel Liquid crystalline Homologous series a-4(4'-n)alkoxy cinnamoyoxy) benzoyl β -3", 4"- Di Methoxy phenyl Ethylenes" Mol. Cryst. Liq. Cryst, Vol. 577; PP 51-58, **2013**.

[10] Doshi et al (i) D.M. suthar and A.V.Doshi, Mol. Cryst. Liq. Cryst Vol. 575 pp 76-83 (**2013**) (ii) H.N. Chauhan and

4 -(4'-n-alkoxy benzoyloxy) β- Phenoxy Ethyl Benzoates

Figure: 1 Phase Behavior of Series

A.V.Doshi, Mol. Cryst Liq. Cryst Vol. 570,
PP 92-100 (2013) (iii) R.P.Chaudhari,
M.L.Chauhan and A.V.Doshi, Vol. 575, pp
88-95 (2013). (iv) U.C.Bhoya ,N.N.Vyas
and A.V.Dosi Mol. Cryst. Liq. Cryst. Vol.
552, PP 104-110 (2012).

[11] Chauhan M.L.,and Jagtap M.S., DerPharmacia Lettre, **2016**, 8 (14) : 55-6

[12] Chaudhari, R. P., & Doshi, A. V.(2012). Mol. Cryst. Liq. Cryst., 582:1, 63-71.