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 ABSTRACT 

This work deals with study of dynamics of a 

viscoelastic rotor shaft system, where 

Stability Limit of Spin Speed (SLS) and 

Unbalance Response amplitude (UBR) are 

two indices. The Rotor Internal Damping in 

the system introduces rotary dissipative 

forces which is tangential to the rotor orbit, 

well known to cause instability after certain 

spin speed. There are two major problems in 

rotor operation, namely high transverse 

vibration response at resonance and 

instability due to internal damping. The 

gyroscopic stiffening effect has some 

influence on the stability. The gyroscopic 

effect on the disc depends on the disc 

dimensions and disc positions on the rotor. 

The dynamic performance of the rotor shaft 

system is enhanced with the help of 

gyroscopic stiffening effect by optimizing 

the various disc parameters (viz. disc 

position and disc dimension). This 

optimization problem can be formulated 

using Linear Matrix Inequalities (LMI) 

technique. The LMI defines a convex 

constraint on a variable which makes an 

optimization problem involving the 

minimization or maximization of a 

performance function belong to the class of 

convex optimization problems and these can 

incorporate design parameter constraints 

efficiently. The unbalance response of the 

system can be treated with H∞ norm 

together with parameterization of system 

matrices. The system matrices in the  

 

equation of motion here are obtained after 

discretizing the continuum by beam finite 

element. The constitutive relationship for the 

damped beam element is written by 

assuming a Kelvin – Voigt model and is 

used to obtain the equation of motion. A 

numerical example of a viscoelastic rotor is 

shown to demonstrate the effectiveness of 

the proposed technique. 

 

INTRODUCTION 

Flexible mechanical systems are gaining an 

increasing significance as more large- scale 

machinery is being built. The majority of 

modern machines incorporate some form of 

flexible rotor-bearing system in order to 

control and distribute mechanical power and 

many of these include propeller attachments. 

Examples include wind turbines, marine 

propulsion systems and turbo machinery. 

Current design trends for rotating equipment 

aim to heighten efficiency by reducing 

weight and increasing operating speeds. 

These goals are being made more attainable 

by a greater understanding of rotor-dynamic 

behaviour and improved methods for 

predicting system responses. The ground 

theory of mechanisms and machines dates 

back to the early twentieth century, but the 

dynamic analysis of flexible mechanisms is 

often too complex for an analytical solution. 

Thus it is with the increased power of 

modern computers that new methods of 

behaviour prediction are being developed 
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for flexible mechanisms. 

Vibration analysis is essential in the design 

and analysis of rotating machinery. The 

majority of vibrations are caused by rotation 

related sources of some description, 

(normally imbalance) consequently the 

forces are synchronous to the rotational 

speed. Thus, forced vibration analysis is 

fundamental in the design and analysis of 

rotating machinery. The two most 

commonly used methods of forced 

frequency analysis are the finite element, or 

transfer matrix method. However since 

certain effects (including, gyroscopic, 

centrifugal stiffening, and fluid bearings) are 

dependant on the rotational speed the 

methods require computational assembly 

and inversion of large matrices at each 

frequency step. This is computationally 

expensive and inefficient however with the 

advances in modern computing speed it is 

rapidly becoming less of a problem. 

The transfer matrix approach allows for a 

continuous representation of the shaft 

system and produces results in good 

agreement to experimental work. Its main 

advantage is the small amount of computer 

memory and power required to analyse 

systems. However, the equations of motion 

are not explicitly written and some 

experimental work is usually required in 

obtaining the transfer matrices. Therefore, as 

computers have become exponentially more 

powerful, finite element methods are now 

largely replacing those based on transfer 

matrices. This is especially true during 

initial system design stages when transfer 

matrices may be difficult to verify. 

The finite element method provides a 

methodical approach for the discretization of 

a continuum. It can provide a solution for 

many types of complicated systems 

including fluid flows, heat exchange, static 

mechanical stresses, or dynamic mechanical 

systems, including those examined in this 

study. 

OVERVIEW OF AVAILABLE 

LITERATURE 

Rotordynamic studies related to 

technological applications date back to the 

second half of the nineteenth century, when 

the increase of the rotational speed of many 

machine elements made it necessary to 

include rotation into the analysis of their 

dynamic behaviour. However, the 

dynamics of rotating systems, as far as rigid 

rotors are concerned, was already well 

understood and the problem of the 

behaviour of the spinning top had been 

successfully dealt with by several 

mathematicians and theoretical 

mechanicists. 

The paper which is considered to be the 

first paper fully devoted to Rotordynamics 

is, on the centrifugal force on rotating 

shafts, published in The Engineer by 

Rankine [29]. It correctly states that a 

flexible rotating system has a speed, 

defined by the author as critical speed, at 

which very large vibration amplitudes are 

encountered. However, the author 

incorrectly predicts that stable running 

above the critical speed is impossible. 

Earlier attempts to build turbines, mainly 

steam turbines, at the end of nineteenth 

century led to rotational speeds far higher 

than those common in other fields of 

mechanical engineering. At these speeds, 

some peculiar dynamic problems are 

usually encountered and must be dealt with 

to produce a successful design. De Laval 
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had to solve the problem correctly 

understanding the behaviour of a rotor 

running at speeds in excess of critical 

speed, i.e., in supercritical conditions, while 

designing his famous cream separator and 

then his steam turbine. 

 

A theoretical explanation of supercritical 

running was supplied first by Foppl [21],  

Belluzzo [9], Stodola [6] and Jeffcott [25] 

in his famous paper of 1919. Although the 

first turbine rotors were very simple and 

could be dealt with by using simple models, 

of the type now widely known as Jeffcott 

rotor, more complex machines required a 

more detailed modelling. Actually, 

although a simplified approach like the 

above-mentioned Jeffcott rotor can explain 

qualitatively many important features of 

real-life rotors, the most important being 

self-centring in supercritical conditions and 

the different roles of the damping of the 

rotor and of the nonrotating parts of the 

machine, it fails to explain other features, 

such as the dependence of the natural 

frequencies on the rotational speed. Above 

all, the simple Jeffcott rotor does not allow 

us to obtain a precise quantitative analysis 

of the dynamic behaviour of complex 

systems, e.g., those encountered in gas or 

steam turbines, compressors, pumps, and 

many other types of machines. 

 

ROTOR SYSTEM MODELLING AND 

OPTIMISATION 

The foundation of analysis is laid here. This 

chapter includes the Finite Element 

Modelling of a rotor system followed by 

optimisation of various disc parameters 

ensuring high stability of the system. 

Here the rotor-bearing system is considered 

to comprise a set of interconnecting 

components consisting of rigid discs, rotor 

segments with distributed mass and 

elasticity, and linear bearings. In this 

section the rigid disc equation of motion is 

developed using a Lagrangian formulation. 

The finite rotor element equation of motion 

is developed in an analogous manner by 

specifying spatial shape functions and then 

treating the rotor element as an integration 

of an infinite set of differential discs. The 

bearing equations are not developed and 

only the linear forms of the equations are 

utilized in this work. 

 

RESULTS AND DISCUSSIONS 

This section involves a design of a solid 

rotor disc mounted on a rotor shaft as 

shown in the Figure (). The rotating shaft is 

supported by bearings at both ends and 

assumed to be as damped support. The 

stiffness and the damping effects of the 

bearing supports are simulated by springs 

and viscous dampers (kyy = 70 MN/m, kzz 

= 50 MN/m, dyy = 700 Ns/m and dzz = 

500Ns/m) in the two transverse directions. 

Following Lalanne and Ferraris [4], the 

material properties of the steel rotor are 

shown in Table (). The purpose is to design 

the rotor shaft system in order to ensure 

low unbalance response amplitude (UBR) 

and high stability limit of spin speed (SLS). 

The design variables chosen here are the 

diameter and thickness of a disc and its 

position on the system. The initial diameter 

and thickness and the unbalance on the disc 

are shown in Table (). The problem 

involves proper placement of various discs 

on the rotor shaft system and at the same 

time to represent the techniques of 

optimization of various design parameters 
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of the disc for achieving the better 

gyroscopic stiffening effect. The sole 

purpose of this study is to represent 

techniques of optimisation of various 

parameters of a rotor-shaft-disc system and 

therefore, to obtain high stability and no 

feasibility study has been done on the 

results so obtained. 

 

Material Density Young’s Modulus Length(m) Diameter(m) 

Damping 

Coefficient 

 (kg/m
3
) (GPa)   (N-s/m) 

Mild Steel 7800 200 1.3 0.2 0.0002 

      

 

Table : Rotor Material and its Properties. 
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Table : Disc parameters    Figure  Schematic Diagram of the    
 

Rotor shaft system 
Rotor shaft system 

 

DISC POSITIONS 

The material damping in the rotor shaft 

introduces rotary dissipative forces which 

is tangential to the rotor orbit, well known 

to cause instability after certain spin speed 

(Zorzi and Nelson [34]). Thus high speed 

rotor operation suffers from two problems 

viz. 1) high transverse response due to 

resonance and 2) instability of the rotor-

shaft system over a spin-speed. Both 

phenomena occur due to material inherent 

properties and set limitations on operating 

speed of rotor. By using light weight and 

strong rotor, the rotor operating speed can 

be enhanced. These two parameters have 

some practical limitation. In other words 

the gyroscopic stiffening effect has some 

influence on the stability. The gyroscopic 

effect on the disc depends on the disc 

dimension and disc position on the rotor. 

Thus, the optimum positioning of the discs 

may achieve high speeds and maximum 

stability. The proper positioning helps 

ensure high SLS. SLS of the rotor–shaft 

system has been found out from the 

maximum real part of all eigenvalues. The 

system becomes unstable when the real part 

touches the zero line. 

The various disc positions for a single disc 

rotor are the consecutive nodes. But 
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obtaining the different sets of disc position 

for a multi disc rotor is not straight 

forward. It has been done by performing 

the permutation between the total number 

of nodes and total number of disc. So the 

total sets of disc position for a simply 

supported rotor are given by N  
n
 Pj , 

where n+2 are the total number nodes and j 

is the no. of discs. 

The plots for SLS are found to be 

symmetric about the vertical axis and it can 

be seen that the maximum SLS is obtained 

when the discs are towards the ends of the 

rotor and if the discs are more towards the 

centre of the rotor then minimum SLS is 

obtained. In other words, the rotor will be 

more stable if the discs are placed towards 

the ends of the rotor and will be less stable 

if the discs are placed more towards the 

centre of the rotor. It is due to the 

gyroscopic stiffening of the rotor. This 

stiffening effect will be less when the discs 

are towards the centre of the rotor. 

 

Case study analysis 

For the steady-state harmonic response, we 

analyze each harmonic independently. The 

steady-state responses for the 4× and 8× are 

shown in Figure 6.5-13. The total response 

is the vector summation of these two 

responses. The resonance (critical) speeds 

can also be found using critical speed 

analysis by specifying the different 

spin/whirl ratio for different harmonics. 

The first critical speed due to 4× excitation 

can be calculated by specifying the 

spin/whirl ratio of 0.25=1/4 ( 4 ω ω= = Ω 

exc ) in the critical speed analysis. When 

the system natural frequency equals the 

excitation frequency, which is four times 

the rotor speed, resonance occurs. As 

calculated and noted in Figure 6.5-14, a 

rotor speed of 1,385 rpm excites the first 

natural frequency of 5,541 rpm (92 Hz). 

Therefore, the rotor speed of 1,385 rpm is 

the critical speed for the 4× harmonic 

excitation. Note that due to the damping 

effect, the peak response occurs slightly 

higher than the calculated critical speed. By 

specifying different spin/whirl ratios, 

critical speeds for other harmonics can also 

be calculated, e.g., a spin/whirl ratio of 

0.125 for the 8× harmonic excitation. 

 
Steady-state response for 4× and 8× 

harmonics in vertical direction 

 
Whirl Speeds and Stability After 

discussions of the critical speeds and 

steady-state response, now let us examine 

another important design consideration: 

system stability. Rotor stability is a vital 

characteristic for smooth operations in 

many high-speed turbomachinery 

applications. Most turbomachinery is 
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operated in the stable regime based on 

linear theory; however, for very high-speed 

and light-weight applications (e.g., the 

automobile turbochargers) and vertical 

rotor applications, it is possible to operate 

the units in the unstable regime defined and 

predicted by linear theory. In 

rotordynamics analysis, rotor stability is 

determined by using the real part of the 

system’s eigenvalue. The eigenvalue for 

each vibration mode at a specified 

rotational speed takes the form: 

 

 
 

They are also referred to as the whirl 

speeds or whirl frequencies. If the damped 

natural frequency is a positive value, this 

mode is referred to as a precessional mode 

with an oscillating frequency that equals 

the damped natural frequency. If the 

damped natural frequency equals zero, this 

mode is referred to as a real mode or 

nonoscillating mode. The real parts of the 

eigenvalues σ are the system damping 

exponents, which are used to determine 

system stability in the linear sense. A 

positive damping exponent (σ ), which is a 

negative damping factor (ξ), indicates 

system instability. The associated 

eigenvectors define the mode shapes for the 

processional modes, for which the rotor 

system will vibrate at resonance when 

damping is not present. The magnitude of 

the damping factor can also be used to 

determine whether the transient motion is 

stable or unstable, oscillatory or non-

oscillatory. When the damping factor is less 

than zero (ξ < 0), the transient motion is 

exponentially increasing with time, and the 

system is said to be unstable in linear 

theory. Eventually, the motion will be 

constrained in a limit cycle motion through 

use of non-linear theory, and linear theory 

does not apply in this regime of operation. 

In practice, the motion will be restrained in 

an acceptable limit cycle, or contact will 

occur and machine parts will be damaged. 

For the stable and underdamped case ( 0 1 

> ξ > ), the transient motion is oscillatory 

with a decaying amplitude and an 

oscillating frequency of ωd . For the 

overdamped case ( 1 ξ > ), the transient 

motion is non-oscillatory with an 

exponentially decaying function of time. 

For the critically damped case ( 1 ξ = ), 

which separates the underdamped 

(oscillatory) and overdamped (non-

oscillatory, aperiodic) cases, the transient 

motion is non-oscillatory and the amplitude 

decays faster than in any other cases. 

Another quantity commonly used in the 

study of system stability is the logarithmic 

decrement. The logarithmic decrement is a 

measure of the rate of decay or growth of 

free (transient) oscillations, and is defined 

as the natural logarithm of the ratio of any 

two successive amplitudes, 

 

 
where 1 , i i+ x x are two successive 

transient vibration amplitudes. A negative 
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logarithmic decrement indicates that the 

transient motion is exponentially growing 

and the system is unstable in the linear 

sense. The logarithmic decrement for a 

precessional mode can be expressed by 

using the eigenvalue as: 

 
The logarithmic decrement can be obtained 

by measurement and, once it is known, the 

damping ratio can be obtained from the 

following equation: 

 

 
Definition of logarithmic decrement 

For very lightly damped system (damping 

factor 1 ξ << ), the amplification factor 

defined from the steady-state response 

curve and the damping factor derived from 

the whirl speed analysis are related by the 

following approximation 

 
This shows that the amplification factor AF 

is inversely proportional to the damping 

factor ξ in very lightly damped systems. It 

indicates that higher damping results in a 

lower amplification factor. Figures 6.6-2 

and 6.6-3 show both the amplification 

factor and logarithmic decrement vs. the 

damping factor for the steady-state 

unbalance response of a single DOF system 

and defined by the API specifications, if the 

amplification factor at a particular critical 

speed, as measured at the vibration probe, 

is less than and logarithmic decrement, we 

know that if the logarithmic decrement is 

greater than 1.11 or the damping factor is 

greater than 0.17, the system is said to be a 

“critically damped” system. 

 
Amplification factor vs. damping factor 

 

Logarithmic decrements and damping factors at three amplification factors 

 

 
 

 

 

The damped natural frequencies and 

associated normal precessional modes are 
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numbered 1B, 1F, 2B, 2F, etc. The numeric 

values (1, 2, 3, etc.) represent the mode 

numbers, which are ordered according to 

the values of the damped natural 

frequencies. The letters B and F indicate 

the directions of the rotor’s precession. “B” 

denotes the backward whirl and “F” 

denotes the forward whirl. At zero speed, 

the forward and backward natural 

frequencies are the same (repeated 

eigenvalues), and the associated planar 

modes vibrate in the X and Y directions, 

respectively. These two modes split into 

two curves as the rotor speed increases, and 

the two planes of motion are coupled due to 

the gyroscopic effect. As the speed 

increases, the forward whirl frequencies 

that has damped backward synchronous 

critical speeds. Caution must be taken when 

using this whirl speed map to determine the 

locations of the critical speeds, however, 

because the peak response very often does 

not occur at the analytical resonance 

frequency due to the system complexity. 

 
Whirl speed map 

 

Without any destabilizing forces included 

in the model, all the modal damping factors 

are positive, as shown in the stability map 

which indicates that all the precessional 

modes are stable. Again, the mode numbers 

are ordered according to the values of the 

damped natural frequencies. At rotor 

speeds less than 6,000 rpm, the first 

backward mode has the lowest damping 

factor; as the speed increases and exceeds 

6,000 rpm, the damping factor of the third 

forward mode (first bending mode) 

decreases quickly with the speed and has 

the lowest value. Note that in this example 

no any destabilizing forces are applied in 

the model; the damping factor of the first 

forward mode actually increases slightly as 

the speed increases, which is not typical for 

systems with fluid film bearings. Systems 

with destabilizing forces will be discussed 

later. The mode shapes for the first six 

modes (three backward and three forward) 

at a rotor speed of 3,575 rpm are plotted. 

 

 
Stability map 
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Mode shapes for the first six modes at 

3,575 rpm 

 

It plots the imaginary part of the eigen 

values (frequency) vs. the real part of the 

eigenvalues (damping exponent) for a 

range of rotor speeds. Again, the first 

forward precessional mode becomes 

unstable when rotor speed exceeds 8,375 

rpm. The root locus plot is not commonly 

used in rotor dynamics study, since the 

instability threshold speed is not as 

apparent as in the stability map, where the 

speed is labeled in the X-axis. It is more 

widely used in control theory 

 
Root locus plot 

 
Mode shapes for the first four modes at 

3,575 rpm 

 
Mode shapes for the first four modes at 

8,500 rpm 

In addition to the destabilizing forces from 

the cross-coupled stiffness coefficients of 

fixed-profile fluid film journal bearings, 

other destabilizing mechanisms are present 

in rotating machinery, such as aerodynamic 

forces caused by the impeller clearance 

cross-coupling will be used to illustrate 

their effect. The aerodynamic cross-
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coupling force induced by the working 

fluid destabilizes the rotor system. For 

simplicity, let us add the same magnitude 

of destabilizing aerodynamic cross-coupled 

stiffness (Q = Kxy = −Kyx) in all six 

impellers to study the rotor stability at its 

normal operating speed of 3,575 rpm. The 

system studied here is a system with 

identical roller bearings (K=5.0E05 Lbf/in 

and C=10 Lbf-s/in), which have limited 

damping. In this configuration, the only 

destabilizing forces are the aerodynamic 

cross-coupling forces, and the system is 

isotropic with circular orbits. The damping 

factors for the first six modes (three 

forward and three backward) vs. the 

aerodynamic cross-coupling Q at the design 

speed of 3,575 rpm are tabulated 

 

Damping factors vs. aerodynamic cross-

coupling Q at 3,750 rpm 

 

The results show that the cross-coupled 

stiffness has little effect on the natural 

frequencies of this isotropic system. 

However, it affects the damping factors 

(system stability). The cross-coupled 

stiffness destabilizes the forward circular 

modes and stabilizes the backward circular 

modes. In this example, the aerodynamic 

cross-couplings have little influence on the 

third mode due to little modal displacement 

at the impeller locations, as shown in the 

mode shape plot. 

The damping factor of the first forward 

mode decreases rapidly as the aerodynamic 

cross-coupled stiffness Q increases, and 

this mode becomes unstable when Q 

exceeds 750 Lb/in. It is important to note 

that the unstable whirling frequency caused 

by the aerodynamic crosscoupled stiffness 

in this example is 4,652 rpm, which is 

higher than the rotor speed of 3,575 rpm. 

This differs from the oil whirl frequency 

caused by the fluid film bearings, which is 

around half the rotor speed. For this six-

stage compressor with fluid film bearings 

(damping in the range of 1,700- 3,900 Lbf-

s/in), it will take as much as 115,000 Lbf/in 

aerodynamic cross-coupling Q at all 

impeller stations to destabilize the rotor 

system, which is more than 150 times that 

for roller bearings. 

 
Static deflection curve from transient 
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analysis 

 
Bearing equilibrium position – nonlinear 

analysis 

 
 

Bearing equilibrium position – Reynolds 

equation 

 
Bearing reaction force 

 

 

 
Rotor steady-state response with gravity 

and unbalance force at a speed below the 

instability threshold 

The rotor responses at bearings for various 

unbalance forces. It shows that for small 

amounts of unbalance, the response orbit is 

around the static equilibrium position 

(me=0) and nearly elliptical. As the 

unbalance increases, the response orbit 

increases. However, the orbit size does not 

increase linearly with unbalance force as 

linear theory predicts. In the non-linear 

systems, the relationship between the 

unbalance force and response is no longer 

linear, as illustrated . The FFT analysis 

shows that the response under unbalance 

excitation is mainly whirling at 3,575 rpm, 

which is synchronous with the rotor speed. 

This synchronous vibration is commonly 

referred to as “1×” vibration. As the 

response orbit increases with unbalance, 2× 

and higher harmonic vibration components 

show up and the elliptical orbit distorts, as 

illustrated. 
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Bearing steady-state response – nonlinear 

simulation 

 
Rotor response spectra at bearings 

This beating phenomenon occurs only in 

lightly damped systems. Although 

shortening the startup time can lower the 

peak amplitude when moving through the 

critical speeds, it is not a good practice for 

lightly damped systems, because the rotor 

will also coast down (decelerate) through 

the critical speeds. For gear-driven 

machines, shortening the startup time 

indicates that a large startup torque is 

required. This could cause damage in the 

coupling and shaft due to high torque 

(stress) during startup. 

 
Acceleration effect 

The maximum amplitude for the 

synchronous vibration occurs around 6,500 

rpm where the critical speed is located. The 

sub-synchronous vibration occurs around 

8,000 rpm and intensifies after 8,500 rpm. 

 
Spectral intensity plot 

 

CONCLUSIONS 

The aim of this project is to gain insight 

into the gyroscopic effects on the rotor disc 

system. For this purpose mathematical 

model of the system is used to study its 

stability. Furthermore, optimisation 

techniques are utilised in order to ensure 

high stability of the system under working 

conditions. The main concentration was 

speed of the system as nowadays high 

speed rotors are of prime importance 

because of the need for speedy works. 

 

A literature survey has been carried out to 

investigate the developments in modelling 

and optimisation techniques. It is observed 

that a huge amount of work has been done 

in modelling different kinds of rotor with 

bearings. Most of them involved the Finite 

Element Modelling. It was also, observed 

that a number of researchers have used 

different optimisation techniques with 

different objective functions in order to 

make rotor systems stable. However, the 

existing literature fails to give us a 

technique that can be combined readily 

with today’s advanced computation 

techniques and easy to handle both linear 

and non-linear systems. As a consequence, 
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it was decided to work on some technique 

that can fulfil the required need. 

 

Here, this work gives the equations of 

motion of a viscoelastic rotor-shaft system. 

The linear viscoelastic rotor-material 

behaviour is represented in the time domain 

where the damped shaft element is assumed 

to behave as Voigt model. The finite 

element model is used to discretize the 

continuum which is based on Euler-

Bernoulli beam theory. Use of LMI 

technique has been shown here to optimize 

disc dimension for high dynamic 

performance of the rotor shaft system. The 

advantage of the proposed method is the 

flexibility offered by the LMI formulation, 

which can be used to create design 

specifications concerning vibration 

amplitudes, stability, critical speeds, modal 

damping levels, and parameter constraints. 

This work also includes the effects of disc 

positions in a rotor system. Results are 

obtained for different sets of disc positions 

to study the dynamic characteristics, where 

stability limit of spin speed and unbalance 

response amplitude are two indices. The 

rotor will be more stable if the discs are 

placed towards the ends of the rotor and 

will be less stable if the discs are placed 

more towards the centre of the rotor. Thus, 

proper placement of disc together with 

optimized dimensions will ensure high 

stability and less response amplitude. 

For more accurate results, normally about 

one-tenth of the maximum suggested time 

step is recommended in the numerical 

simulation. Thus, ∆t = 1E-05 is used for 

linear problems in the above example. For 

nonlinear problems, a smaller time step is 

necessary for the solution to converge. 

Typically, ∆t = 1E-06 is suggested for 

nonlinear problems. For highly nonlinear 

systems, such as automotive turbochargers, 

a further smaller time step is required for 

solution convergence. 
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