
AIJREAS VOLUME 6, ISSUE 3 (2021, MAR) (ISSN-2455-6300)ONLINE

Anveshana’s International Journal of Research in Engineering and Applied Sciences

Anveshana’s International Journal of Research in Engineering and Applied Sciences
EMAILID:anveshanaindia@gmail.com,WEBSITE:www.anveshanaindia.com

76

SPEED UP OF SOFTWARE DEVELOPMENT USING OBJECT

ORIENTED DESIGN PATTERNS

MR. PABBOJU RAMESH ,

Professor, Department of C.S.E

Mahaveer Institute of Science and

Technology, Bandlaguda, Hyderabad, T.S,

pramesh.448@gmail.com

DR. R.NAKKEERAN, HOD,

Department of C.S.E

Mahaveer Institute of Science and

Technology, Bandlaguda, Hyderabad, T.S,

sudhandhiram64@gmail.com

Abstract: Software quality is considered to be one

of the most important concerns of software

production teams. Software design patterns are a

better solution for building large Object-Oriented

(OO) software systems. They present well-tested and

verified solutions to recurring difficulties that

developers address. There are many advantages to

using patterns. They can speed up the software

development method. Design patterns combine

learning to perform it more natural for designers to

use well-known and strong designs developed from

proficient experience. Simultaneously, software

design patterns are too abstract and remain an art

that has to be learned over time with experience. This

study aims to propose a methodology for comparing

design patterns to alternative designs with an

analytical method. More specifically, the

identification of such thresholds can become very

useful for decision making during system design and

refactoring.

Keywords: Design patterns, Object oriented

programming, software performance analysis.

Quality Attributes.

I. INTRODUCTION

Design patterns idea is used to identify well-

documented reusable solutions to common

design problems. An appropriate variety of

design patterns for use in software

improvement have already been analyzed in

the literature [1], [2]. For the realistic

implementation of design patterns, a series

of tools have been developed to discover

and formalize patterns [3]. These patterns

and design tools make it easy to understand

and create structures. The design model

tools aid in the predictable and uninterrupted

use of services and the user's assets. Each

pattern is described with the help of a

pattern template. These form templates

reinforce a clear answer to regular

inconvenience. Generally, templates are

used to capture all sample elements and

describe their problems, motivation,

strategies, technology, applicable

possibilities, responses, and examples.

Gamma et al. [4] Also known as Gang of

Four (GoF), well-known models suggested

twenty-three versions of different types of

design patterns. After that, exceptional

authors suggested various unique design

styles. GoF design patterns are broadly

categorized into three categories, construct,

structural, and behavioral. Design patterns

can also be considered a unique form of

program architecture [5]. An object-oriented

(OO) model is currently strongly advocated

for software development instead of

standard and feature-oriented

methodologies. The object-oriented method

has distinct properties, such as

encapsulation, polymorphism, and genetics,

making the code reliable and

AIJREAS VOLUME 6, ISSUE 3 (2021, MAR) (ISSN-2455-6300)ONLINE

Anveshana’s International Journal of Research in Engineering and Applied Sciences

Anveshana’s International Journal of Research in Engineering and Applied Sciences
EMAILID:anveshanaindia@gmail.com,WEBSITE:www.anveshanaindia.com

77

understandable. Building on OO principles,

unique metrics are applied to measure

program greatness using the item-oriented

method.

A hierarchical model for an object oriented

design, called Quality Model of Object

Oriented Design proposed by Bansiya and

Davis relates the quantitable Object

Oriented Characteristics give better caliber

of Software Quality Attributes. QMOOD

model is characterized by four levels and

three mappings. Figure 1 illustrates the

structure of QMOOD approach.

Fig.1 Quality Model of Object

OrientedDesign Model

In general, a lot of the fun can be reused on

an architectural level. However, reuse of

design patterns does not always lead to

direct reuse of algorithms, micro-designs,

interfaces, or applications. Systematically

explain a preferred design that addresses a

routine design problem in object-oriented

structures. Design patterns also describe

problems and answer during use as well as

outcomes for this individual solution. Also,

it provides instructions and implementation

examples and a diagram or template for a

method for troubleshooting a problem that

can be used under many unique

circumstances. The solution is customized

and implemented to solve the problem in a

specific context. In Gang of Four (GoF),

patterns usually contain these predominant

factors: intention, motivation, application,

structure, participants, collaboration,

consequences, execution, sample code,

known uses, and related patterns. Although

the terminology may differ more from the

author, all object-oriented design patterns

are written following the elements above.

II. RELATED WORK

Object oriented design pattern is an active

area of research in software development.

Ackerman L and Gonzalez C explore the

benefits of implementing patterns in

software designs [7]. The article introduces

developers and architects to the idea of a

pattern implementation which is an artifact

that allows the codification of a pattern

specification for a specific environment and

can be created and used for different phases

in the software development lifecycle.

Rising. L analyzes an example from a small

development team and discovers that a

novice pattern, called the Mediator, is a

perfect fit for the design challenges that they

had just spent hours battling.

In [9], an analysis was done to verify the

reusability of design patterns and software

packages, which uncovered some

advantages and disadvantages of design

patterns. Examples here developed by

employing design pattern, alternative design,

and compared, the result shown that patterns

provide a solution that is most extensible.

A team at Erricson developed frameworks

based on design patterns for two years,

according to. The history of design patterns

and some developments characterizing the

AIJREAS VOLUME 6, ISSUE 3 (2021, MAR) (ISSN-2455-6300)ONLINE

Anveshana’s International Journal of Research in Engineering and Applied Sciences

Anveshana’s International Journal of Research in Engineering and Applied Sciences
EMAILID:anveshanaindia@gmail.com,WEBSITE:www.anveshanaindia.com

78

advantages and disadvantages of design

patterns are presented in [9]. Appostollos

2006 evaluates usage of object oriented

design patterns in game development,

proving maintainability although the

research was biased towards game

development only.

Yacoub, S. A., Ammar, H. H., &Mili A.,

teaches developers about the abstraction

benefits of design patterns. The paper

explains the benefits that include

understanding the dependencies and

collaboration between participating patterns

while hiding implementation details.

Douglas C. Schmidt and Paul Stephenson

present a case study illustrating the

implementation of design patterns (Reactor

and Acceptor) in object-oriented

telecommunication software framework

across UNIX and Windows NT OS

platforms and discuss the techniques,

benefits, and limitations of applying a

design pattern-based reuse strategy to

commercial telecommunication software

systems.

There are 3 basic classes of design

patterns.

a) Creational Design patterns

b) Structural Design Pattern

c) Behavioral Design Pattern.

A.Creational Design patterns

 It is further categorized into

1) Object-Creational Patterns

2) Class – Creational Patterns

1. Object creational Patterns

It deals with Object creation. It defers part

of its Object creation to another Object.

2. Class Design patterns

It deals its object creation to subclasses.

The creational design patterns are abstract

factory, builder, factory method, singleton

and prototype.

These design patterns are basically

concerned with class instantiation and are

composed of two dominant ideas. One is

encapsulating knowledge about which

concrete classes the system uses and the

other hides how instances of these concrete

classes are created and combined. Creational

design patterns are further categorized into

Object-creational patterns and Class-

creational patterns, where Object-creational

patterns deal with Object creation and Class-

creational patterns deal with Class-

instantiation. In greater details, Object-

creational patterns defer part of its object

creation to another object, while Class-

creational patterns defer its object creation

to subclasses Gang of Fourq. The examples

of creational design patterns are; abstract

factory, builder, factory method, singleton

and prototype.

b) Structural design patterns

These patterns ease software design by

identifying a way to realize relationships

between entities. Such patterns gives Class

and Object composition. Structural class-

creation patterns use inheritance to compose

interfaces. But the structural object-patterns

define ways to compose the objects to obtain

new functionality. Examples are adapter,

AIJREAS VOLUME 6, ISSUE 3 (2021, MAR) (ISSN-2455-6300)ONLINE

Anveshana’s International Journal of Research in Engineering and Applied Sciences

Anveshana’s International Journal of Research in Engineering and Applied Sciences
EMAILID:anveshanaindia@gmail.com,WEBSITE:www.anveshanaindia.com

79

decorator, bridge, composite, flyweight,

façade and proxy

c) Behavioral design patterns

Behavioral design patterns are going to find

the common communication patterns in the

between objects and realizes the assignment

of responsibilities between related objects.

By doing so, these patterns increase

flexibility in carrying out this

communication. The behavioral design

patterns are Observer, chain of

responsibility, interpreter, iterator, memento,

template method, command, visitor, strategy

and mediator.

III. HOW TO SELECT DESIGN

PATTERNS

With many design patterns to choose from;

it may be difficult to find one that addresses

a particular problem, especially if the list is

new and unfamiliar. The problem of

searching patterns means the effort of

getting information about existing patterns.

The Selection of a particular pattern is

described as the problem of deciding which

pattern to choose among all available

solutions. Below is an outline of approaches

that can be used to find the design pattern

that suits a particular problem.

According to the GoF e-book, there are five

main methods to research and choose design

patterns, which are; Sample repositories,

pattern catalogs, advisory structures, official

languages, search engines, and other tactics.

Authors create online pattern repositories to

increase pattern availability. In such

repositories, patterns can be retrieved using

search criteria and with the help of manual

browsing between the different patterns.

Moreover, various consulting systems have

been proposed to indicate the exact pattern

according to the inconvenience the

developer wants to clarify. There are also

many articles describing the processes that

use the official languages so that one can

represent design patterns and choose

patterns compatible with any illustration.

Pattern selection by search engines such as

Google and Yahoo is compatible with

keyword searches on slow-moving engines

that index sample descriptions. Finally, there

are many different technologies that cannot

be categorized into any of the above

categories made up of.

Accordingly, methods have been proposed

that allow software developers to find the

correct design samples for a particular

design problem. So a degree is maintained

that avoids the influence of the large number

of design patterns found in exclusive design

sample catalogs.

Consider how design patterns solve

design problems: According to the GoF

textbook discussion, design patterns help

find appropriate objects, determine object

granularity, specify object interfaces, and

several other ways in which design patterns

solve design problems.

Scan Intent sections from all the patterns

in the catalog: Each pattern's intent is to be

considered to find one or more that sound

relevant to the current problem. A

classification scheme can be used to narrow

the search

AIJREAS VOLUME 6, ISSUE 3 (2021, MAR) (ISSN-2455-6300)ONLINE

Anveshana’s International Journal of Research in Engineering and Applied Sciences

Anveshana’s International Journal of Research in Engineering and Applied Sciences
EMAILID:anveshanaindia@gmail.com,WEBSITE:www.anveshanaindia.com

80

IV. HOW TO USE A DESIGN

PATTERN

Once a design pattern has been selected, the

question is now on the approach that is to be

used to apply the design pattern effectively.

The following are the steps that can be

employed in the use of a design pattern:

The design pattern has to be read through at

least once for an overview. While reading,

pay particular attention should be to the

applicability and consequences sections to

ensure that the pattern is right for that

specific problem. The structure, participants

and collaborations sections must be revisited

and an understanding of how the classes and

objects in the pattern relate to one another

needs to be achieved. Studying the code

helps in learning how to implement the

pattern, and this is done by looking at the

sample code section to find concrete

examples of the design pattern in the code.

Choice of names for pattern participants is

very important because they ought to be

meaningful in the application context. They

are usually too abstract to appear directly in

an application. Nevertheless, it's useful to

incorporate the participant name into the

name that appears in the application, as this

helps make the pattern more explicit during

the implementation. For example, usage of

the Strategy pattern for a text composition

algorithm might mean having classes such

as Simple-Layout-Strategy or Text-Layout-

Strategy. The next stage involves defining

the classes, declaring their interfaces,

establishing their inheritance relationships,

and defining the instance variables that

represent data and object references.

Identifying existing classes in the

application that the pattern will affect and

modifying them accordingly can also be

included.

Defining application-specific names for

operations in the pattern generally depends

on the application. Responsibilities and

collaborations associated with each

operation should be used as a guide.

Consistency in the naming conventions is

important, for example, using the "Create-"

prefix consistently denotes a factory method.

Implementing the operations is now done to

carry out the responsibilities and

collaborations in the pattern. The

Implementation section offers hints to

guidance in the implementation. The

examples in the Sample Code section may

be of help as well.

V. ADVANTAGES OF DESIGN

PATTERNS

The following are some of the benefits of

OO design patterns.

They can reduce development time as

known solutions are used instead of

reinventing the wheel thereby improving

delivery speed.

Design patterns promote Discovering and

learning with a view to making it easier for

designers to use popular and successful

designs developed from professional

experience (Chang, 2011. According to

Rising (2010), there may be a debate about

the advantages of providing formal

education to developers versus simply

having access to a large search repository in

AIJREAS VOLUME 6, ISSUE 3 (2021, MAR) (ISSN-2455-6300)ONLINE

Anveshana’s International Journal of Research in Engineering and Applied Sciences

Anveshana’s International Journal of Research in Engineering and Applied Sciences
EMAILID:anveshanaindia@gmail.com,WEBSITE:www.anveshanaindia.com

81

which to search for a sample. To tackle

some challenging problems. According to

Blestin (2003), engineers are under the

increased tension to provide answers with an

excessive degree of exception in time. The

Triangle project (2011) describes that task

management can focus more effectively on

the following three aspects of an

improvement attempt: (a) Speed, (b)

satisfactory and (c) value. '' Each sample

describes a problem that occurs over time

and over again in our environment, then

describes half the answer to that problem,

that way I can use the answer a million

times, without doing the same thing.

Design patterns provide flexibility and

extensibility.

Tichy (1998) describes the idea of flexibility

such as how design patterns can improve

software architecture, speed of

implementation, simplify maintenance, and

help prevent architectural slippage. Future

continuous adjustments (extensibility) with

these types of hinges are surprisingly less

expensive, but forcing the program to work

in different ways is like bending the elbow

backwards; the device is commonly broken

[12]. It's also helpful to have thoughtful

answers that can be tried and tested.

Patterns make the communication of

development teams easier.

Because design patterns capture distilled

joy, they can provide a conversational tool at

some point in the software improvement life

cycle and in various communities of

designers and programmers (Cline, 1996).

This improved conversation between

software developers is a feature that may

allow less experienced developers to offer

great designs. According to Fowler (2003), a

group expert can use written design methods

to help educate other team participants as

they draw through software, design, and

review requirements. Since design patterns

make fun of distilled cheer, they can make

for a chatting device. Throughout the

software development life cycle and in

numerous groups of designers and

programmers (Cline, 1996). This constant

conversation between software developers is

a feature that can allow less experienced

builders to offer great designs. According to

Fowler (2003), an expert on the team can

use written design methods to help educate

other stakeholders on the team as they draw,

design, and evaluate program requirements.

Patterns are underspecified

Design patterns are indeterminate as they

generally do not restrict implementations too

much. This is useful because modules allow

flexible solutions that can be customized to

take into account software requirements and

limitations imposed by the use of tool

optimization. Since it is not specific enough,

identifying your pattern for a specific reason

is one of the best ways to identify it. [4].

Design patterns capture knowledge

that is implicitly understood

Once developers are exposed and motivated

well by design patterns, they may yearn to

embrace naming and pattern ideas. This

stems from the fact that patterns encode

knowledge that has already been intuitively

understood. Therefore, once the basic

parameters, codes, and formatting of

prototypes are mastered, it becomes easy to

AIJREAS VOLUME 6, ISSUE 3 (2021, MAR) (ISSN-2455-6300)ONLINE

Anveshana’s International Journal of Research in Engineering and Applied Sciences

Anveshana’s International Journal of Research in Engineering and Applied Sciences
EMAILID:anveshanaindia@gmail.com,WEBSITE:www.anveshanaindia.com

82

record and approximate the many parts of

the structure and design use patterns.

Promote an approved approach to

documenting software architectures. Styles

not specified

Planning styles are not specific enough

considering they generally don't restrict

implementations much now. This is useful

because patterns allow flexible responses

that can be customized to take account of

tool needs and limitations imposed with the

help of tool development. Since it has not

been identified, implementing a pattern to

your employees for a specific reason is one

of the best ways to find out.

Design patterns capture tacitly understood

information

Once developers discover and are

encouraged through the use of design

patterns, they are eager to embrace naming

ideas and patterns. This is due to the fact

that the patterns encode knowledge that has

already been intuitively understood.

Therefore, once you master the basic

concepts, notations, and pattern template

codecs, it becomes easy to record and use

virtually many parts of the tool architecture

and design use of patterns. Well exposed

and stimulated by design patterns, they can

be enthusiastic to embrace naming and

pattern ideas. This stems from the fact that

patterns encode knowledge that has already

been intuitively understood. Therefore, once

the basic standards, codes, and formatting of

prototypes are mastered, it becomes easy to

record and create the many parts of the

machine structure and design use patterns.

Promote an approved approach to

documenting software architectures.

Styles not specified

Design styles are nonsensical since they

generally don't restrict implementations

much now. This is useful because patterns

allow flexible responses that can be

customized to take account of tool needs and

limitations imposed with the help of tool

development. Since it has not been

identified, implementing a pattern to your

employees for a specific reason is one of the

best ways to find out.

Design patterns capture tacitly

understood information

Once developers discover and are

encouraged through the use of design

patterns, they are eager to embrace naming

ideas and patterns. This is due to the fact

that the patterns encode knowledge that has

already been intuitively understood.

Therefore, once you master the basic

concepts, notations, and pattern template

codecs, it becomes easy to record and use

virtually many parts of the tool's architecture

and design use of patterns.

They promote a structured means of

documenting software architectures

This is completed by portraying the structure

and collaboration of contributors to the

architecture of a software program at a stage

above the source code. This abstraction

action is beneficial because it captures

important architectural interactions while

suppressing irrational information. Design

patterns make successful designs and

structures difficult to reuse. The expression

AIJREAS VOLUME 6, ISSUE 3 (2021, MAR) (ISSN-2455-6300)ONLINE

Anveshana’s International Journal of Research in Engineering and Applied Sciences

Anveshana’s International Journal of Research in Engineering and Applied Sciences
EMAILID:anveshanaindia@gmail.com,WEBSITE:www.anveshanaindia.com

83

of validated strategies as design patterns

makes them more available to builders of

new systems. Design patterns help design

options that make the device reusable and

avoid options that put reusability at risk.

Design patterns can even improve the

documentation and maintenance of existing

structures by providing explicit specification

for class-object interactions and their

primary purpose. In fact, design patterns

help a dressmaker to get the 'right' styling

faster. Patterns improve the documentation

and maintenance of existing structures by

providing explicit specifications for the

evolution and interactions of organisms and

their primary component.

VI. CONCLUSION

From the analysis carried out based on the

previous published work, a conclusion is

reached that design patterns are not a

panacea. In as much as there are advantages,

they also tend to pose a lot of disadvantages

if not applied correctly. In this paper a brief

overview of OO design patterns is given

with catalog of design patterns, how to

select and use them and their advantages and

disadvantages in Object oriented analysis

and design. Much work is still to be done on

design patterns to make them

understandable to new users because

currently usage depends on the developer’s

expertise.

REFERENCES

[1] E. Gamma, R. Helm, R. Johnson, and J. Vlissides,

Design patterns: Elements of Reusable Object-

Oriented Software. Addison-Wesley, 1995.

[2] D. Alur, D. Malks, J. Crupi, G. Booch, and M.

Fowler, Core J2EE Patterns (Core Design Series):

Best Practices and Design Strategies, 2nd ed.

Prentice Hall, 2003.

[3] H. Zhu and I. Bayley, “An algebra of design

patterns,” ACM Transactions on Software

Engineering and Methodology (TOSEM), vol. 22, no.

3, pp. 23:1–23:35, Jul. 2013. [Online]. Available:

http://doi.acm.org/10.1145/2491509.2491517.

[4] E. Gamma, R. Helm, R. Johnson, and J. Vlissides,

Design patterns: Elements of Reusable Object-

Oriented Software. Addison-Wesley, 1995.

[5] A. K. Dwivedi and S. K. Rath, “Selecting and

formalizing an architectural style: A comparative

study,” in Contemporary Computing (IC3),2014

Seventh International Conference on, Aug 2014, pp.

364–369.

[6] J. Bansiya and C. G. Davis, “A hierarchical

model for object-oriented design quality

assessment,” Software Engineering, IEEE

Transactions on, vol. 28, no. 1, pp. 4–17, 2002.

[7] Ackerman. L and Gonzalez. C, ‘The value of

pattern implementations’, The World of Software

Development Journal, Computer Science Vol.32

Issue. 6, pp. 28-32, 2011.

[8]ApostolosAmpatzoglou, postolosKritikos, George

Kakarontzas and IoannisStamelos, ‘An Empirical

Investigation on the Reusability of Design Patterns

and Software Packages’, Department of Informatics,

Journal of Systems and Software, Vol. 84, 2011.

[9] J. Niere, W. Sch¨afer, J. P. Wadsack, L.

Wendehals, and J. Welsh, “Towards pattern-based

design recovery,” in Proceedings of the

24
th

international conference on Software

engineering. ACM, 2002, pp. 338–348.

[10] H. Zhu and I. Bayley, “An algebra of design

patterns,” ACM Transactions on Software

Engineering and Methodology (TOSEM), vol. 22, no.

3, pp. 23:1–23:35, Jul. 2013. [Online]. Available:

http://doi.acm.org/10.1145/2491509.2491517

http://doi.acm.org/10.1145/2491509.2491517

AIJREAS VOLUME 6, ISSUE 3 (2021, MAR) (ISSN-2455-6300)ONLINE

Anveshana’s International Journal of Research in Engineering and Applied Sciences

Anveshana’s International Journal of Research in Engineering and Applied Sciences
EMAILID:anveshanaindia@gmail.com,WEBSITE:www.anveshanaindia.com

84

[11] I. Issaoui, N. Bouassida, and H. Ben-Abdallah,

“Using metric-based filtering to improve design

pattern detection approaches,” Innovations in

Systems and Software Engineering, Springer,

December 2014.

[12] C.-H. Chang, C.-W. Lu, and P.-A. Hsiung,

“Pattern-based framework for modularized software

development and evolution robustness,” Information

and Software Technology, vol. 53, no. 4, pp. 307–

316, 2011.

