GENERALIZATION OF RHODES THEOREM TO A SEQUENCE OF SELF MAPS

Dr. Sujatha Kurakula Department of Mathematics Mahaveer Institute of Science and Technology sujathakurakula99@gmail.com

P. Mahendra Varma

Department of Mathematics Mahaveer Institute of Science and Technology mahendravarma12@gmail.com

ABSTRACT In this research article we considered a seq- of self maps on a complete 2-metric space satisfying contractive type condition. The Rhodes fi- point theorem can be obtained as a corollary to this generalization

AMS Subject Classification 47HI0, 54H25

Key words : Fi -point, 2- Metric space , Caucy- sequence, Self mapping

INTRODUCTION

In 1906, *Frechet* ([1] & [2]) introduced the notion of metric(met) as an abstract generalization of length concept. The notion of 2-metric was introduced by *Gahler* [3] in 1963 as an abstract generalization of the concept of area function for Euclidean triangles. The concept of 2-metric attracted the attention of many researchers in the field of fi- point theory. Many authors like *Iseki* [4], *Khan* [5], *Rhoades* [6], *Lal* and *Singh* [6] etc. probed deeply into this area and established several fi-point theorems in 2-met space setting as generalizations or extensions to the metric fi- point theorems. Several fi- point theorems appeared in 2-met space setting analogous to the fi- point theorems in met spaces.

1. PRELIMINARIES

In this section we define Fi-point , 2- Met space and Caucy sequence

Definition-1.1 Let X be a non-empty set. A function F from X into itself is called a self map on X. A point x belongs to X is called a fi-point of a self map if F(x) = x

Definition-1.2: A 2-metr. on a non-empty set Ω is a function $\lambda : \Delta \to i$, satisfying the following properties.

- (a) $\lambda(u,v,w) = 0$ if at least two of u,v,w are equal
- (b) for each pair of distinct points u, v in Ω there exists a point $w \in \Omega$ such that $\lambda(u, v, w) \neq 0$
- (c) $\lambda(u,v,w) = \lambda(u,w,v) = \lambda(v,w,u) \quad \forall u,v \text{ and } w \text{ in } \Omega$
- (d) $\lambda(u,v,w) \leq \lambda(u,v,a) + \lambda(u,a,w) + \lambda(a,v,w) \quad \forall u,v,w \text{ and } a \text{ in } \Omega$ then λ is called a 2-metric on Ω and the pair (Ω, λ) is called a 2-metric space.

Example-1.3: Consider the real line R. Define $d: j^3 \rightarrow j$ by $d(x, y, z) = \min\{|x - y|, |y - z|, |z - x|\}.$

Then d forms a 2-met on R.

Defination 1.4: A sequence $\{x_n\}$ in a 2-normed linear space $(L, \|., \|)$ is said to be a *Caucy sequence* if there exist two points $y, z \in L$ such that

- (a) y and z are linearly independent
- (b) $\lim_{m \to \infty} ||x_n x_m, y|| = 0$
- (c) $\lim_{m,n\to\infty} \|x_n-x_m,z\|=0$

1. A Generalisation of Rhoades theorem

This section mainly focuses on the generalisation of the Rhoades fi- point theorem which was published by *B.E. Rhoades* in his classical research article [6] of 1979. His fi-point theorem can easily be obtained from the following generalised fi- point theorem as a corollary- 2.3.

Theorem-2.1: Let $m \ge 1$ and $\delta \in (0,1)$. Suppose that $\langle \varphi_n \rangle$ where $n \in \varphi_*$, is a sequence of self maps on a complete 2-metric space (Ω, λ) such that

$$\begin{split} \lambda \Big(\varphi_0^m(u), \varphi_n^m(v), a \Big) &\leq \delta \max \Big\{ \lambda(u, v, a), \lambda \Big(u, \varphi_0^m(u), a \Big), \lambda \Big(v, \varphi_n^m(v), a \Big), \\ & \frac{1}{2} \Big[\lambda \Big(u, \varphi_n^m(v), a \Big) + \lambda \Big(v, \varphi_0^m(u), a \Big) \Big] \Big\} \end{split}$$

For every u, v and a in Ω . Then there exists a uniq common fi- point for each φ_n in Ω

Proof: Fix a point u_0 in Ω and define a sequence $\langle u_n \rangle$ in Ω such that $u_{2n-1} = \varphi_0^m (u_{2n-2}) \& u_{2n} = \varphi_n^m (u_{2n-1})$ where $n \in \mathbb{Y}$. Now we have

$$\begin{split} \lambda(u_{2n}, u_{2n+1}, u_{2n+2}) &= \lambda(u_{2n+1}, u_{2n+2}, u_{2n}) \\ &= \lambda(\varphi_0^m(u_{2n}), \varphi_n^m(u_{2n+1}), u_{2n}) \\ &\leq \delta \max\left\{\lambda(u_{2n}, u_{2n+1}, u_{2n}), \lambda(u_{2n}, \varphi_0^m(u_{2n}), u_{2n}), \lambda(u_{2n+1}, \varphi_n^m(u_{2n+1}), u_{2n}), u_{2n}\right\} \\ &= \frac{1}{2} \Big[\lambda(u_{2n}, \varphi_n^m(u_{2n+1}), u_{2n}) + \lambda(u_{2n+1}, \varphi_0^m(u_{2n}), u_{2n})\Big] \Big\} \\ &= \delta\lambda(u_{2n+1}, \varphi_n^m(u_{2n+1}), u_{2n}) \\ &= \delta\lambda(u_{2n+1}, u_{2n+2}, u_{2n}) \end{split}$$

 $\Rightarrow \lambda(u_{2n}, u_{2n+1}, u_{2n+2}) \le \delta\lambda(u_{2n}, u_{2n+1}, u_{2n+2})$ By Result-1.4.2, it follows that $\lambda(u_{2n}, u_{2n+1}, u_{2n+2}) = 0$.

$$\begin{split} &\operatorname{Now} \ \lambda(u_{1},u_{2},a) = \lambda(\varphi_{0}^{m}(u_{0}),\varphi_{1}^{m}(u_{1}),a) \\ &\leq \delta \max\left\{\lambda(u_{0},u_{1},a),\lambda(u_{0},\varphi_{0}^{m}(u_{0}),a),\lambda(u_{1},\varphi_{1}^{m}(u_{1}),a) \\ &\frac{1}{2}[\lambda(u_{0},\varphi_{1}^{m}(u_{1}),a)+\lambda(u_{1},\varphi_{0}^{m}(u_{0}),a)]\right\} \\ &= \ \delta \max\left\{\lambda(u_{0},u_{1},a),\lambda(u_{1},u_{2},a),\frac{1}{2}\lambda(u_{0},u_{2},a)\right\} \\ &\leq \delta \max\left\{\lambda(u_{0},u_{1},a),\lambda(u_{1},u_{2},a),\frac{1}{2}[\lambda(u_{1},u_{2},a)+\lambda(u_{0},u_{1},a)]\right\} \\ &\operatorname{Put} \ K = \max\left\{\lambda(u_{0},u_{1},a),\lambda(u_{1},u_{2},a),\frac{1}{2}[\lambda(u_{1},u_{2},a)+\lambda(u_{0},u_{1},a)]\right\} \\ &\operatorname{Put} \ K = \max\left\{\lambda(u_{0},u_{1},a),\lambda(u_{1},u_{2},a),\frac{1}{2}[\lambda(u_{1},u_{2},a)+\lambda(u_{0},u_{1},a)]\right\} \\ &\operatorname{If} \ K = \lambda(u_{1},u_{2},a) \ \text{then we obtain } \lambda(u_{1},u_{2},a) \\ &\operatorname{Miss} \ a \ contradiction. \ So \ K \neq \lambda(u_{1},u_{2},a). \\ &\operatorname{If} \ K = \frac{1}{2}[\lambda(u_{0},u_{1},a)+\lambda(u_{1},u_{2},a)] \qquad \rightarrow \quad (1) \\ &\operatorname{Since} \ K = \max\left\{\lambda(u_{0},u_{1},a),\lambda(u_{1},u_{2},a),\frac{1}{2}[\lambda(u_{1},u_{2},a)+\lambda(u_{0},u_{1},a)]\right\}, \\ &\text{we have } \ K \geq \lambda(u_{0},u_{1},a) \\ &\lesssim \lambda(u_{1},u_{2},a) + \lambda(u_{0},u_{1},a)] \geq \lambda(u_{0},u_{1},a) \\ &\Rightarrow \ \lambda(u_{1},u_{2},a) + \lambda(u_{0},u_{1},a) \geq \lambda(u_{0},u_{1},a) \\ &\Rightarrow \ \lambda(u_{1},u_{2},a) \geq \lambda(u_{0},u_{1},a) \\ &\Rightarrow \ \lambda(u_{1},u_{2},a) \geq \lambda(u_{0},u_{1},a) \\ &\Rightarrow \ \lambda(u_{1},u_{2},a) \geq \lambda(u_{0},u_{1},a) + \lambda(u_{1},u_{2},a)] \\ &\operatorname{So, we get} \ \lambda(u_{0},u_{1},a) \leq \frac{\delta}{2}[\lambda(u_{0},u_{1},a) + \lambda(u_{1},u_{2},a)] \\ &\operatorname{So, we get} \ \lambda(u_{0},u_{1},a) \leq \frac{\delta}{2}[\lambda(u_{0},u_{1},a) + \lambda(u_{1},u_{2},a)] \\ &\operatorname{So, we get} \ \lambda(u_{0},u_{1},a) \leq \frac{\delta}{2}[\lambda(u_{0},u_{1},a) + \lambda(u_{1},u_{2},a)] \\ &\operatorname{So, we get} \ \lambda(u_{0},u_{1},a) \leq \delta[\lambda(u_{0},u_{1},a) + \lambda(u_{1},u_{2},a)] \\ &\operatorname{So, we get} \ \lambda(u_{0},u_{1},a) \leq \delta[\lambda(u_{0},u_{1},a) + \lambda(u_{1},u_{2},a)] \\ &\operatorname{Miss} \ is also \ a \ contradiction. \\ &\operatorname{So \ we must have} \ K = \lambda(u_{0},u_{1},a) \\ &\operatorname{So \ we must have} \ K = \lambda(u_{0},u_{1},a) \\ &\operatorname{Similarly} \ \lambda(u_{2},u_{3}) \leq \delta^{2}\lambda(u_{0},u_{1},a) \\ &\operatorname{Sonthing \ in \ this way we get} \ \lambda(u_{1},u_{2},a) \leq \delta^{n}\lambda(u_{0},u_{1},a) \\ &\operatorname{Sonthing \ in \ this way we get} \ \lambda(u_{1},u_{2},a) \leq \delta^{n}\lambda(u_{0},u_{1},a) \\ &\operatorname{Sonthing \ in \ this \ we get} \ \lambda(u_{1},u_{2},a) \leq \delta^{n}\lambda(u_{0},u_{1},a) \\ &\operatorname{Sonthing \ i$$

We have

$$\begin{split} \lambda(u_{n}, u_{n+m}, a) &\leq \lambda(u_{n}, u_{n+m}, u_{n+1}) + \lambda(u_{n}, u_{n+1}, a) + \lambda(u_{n+1}, u_{n+m}, a) \\ &= \lambda(u_{n}, u_{n+1}, a) + \lambda(u_{n}, u_{n+m}, u_{n+1}) + \lambda(u_{n+1}, u_{n+m}, a) \\ &\leq \delta^{n} \lambda(u_{0}, u_{1}, a) + \lambda(u_{n}, u_{n+m}, u_{n+1}) + \lambda(u_{n+1}, u_{n+m}, u_{n+2}) \\ &\quad + \lambda(u_{n+1}, u_{n+2}, a) + \lambda(u_{n+2}, u_{n+m}, a) \\ &\leq \delta^{n} \lambda(u_{0}, u_{1}, a) + \delta^{n+1} \lambda(u_{0}, u_{1}, a) + \lambda(u_{n}, u_{n+m}, u_{n+1}) \\ &\quad + \lambda(u_{n+1}, u_{n+m}, u_{n+2}) + \lambda(u_{n+2}, u_{n+m}, a) \\ &\leq \delta^{n} \lambda(u_{0}, u_{1}, a) + \delta^{n+1} \lambda(u_{0}, u_{1}, a) + \delta^{n+2} \lambda(u_{0}, u_{1}, a) + \dots \\ &= \delta^{n} \left(1 + \delta + \delta^{2} + \dots\right) \lambda(u_{0}, u_{1}, a) \\ &= \delta^{n} \frac{1}{1 - \delta} \lambda(u_{0}, u_{1}, a) \end{split}$$

 $\lambda(u_n, u_{n+m}, a) \leq \frac{\delta^n}{1-\delta} \lambda(u_0, u_1, a)$

Hence $\lambda(u_n, u_{n+m}, a) \to 0$ as $n \to \infty$. $\Rightarrow \langle u_n \rangle$ is a Caucy sequence in Ω . Since Ω is complet, $\langle u_n \rangle$ cges to a point u in Ω . Now we prove that u is a uniq. common fi- point to each φ_n , $n \in \phi_*$. Consider

$$\begin{split} \lambda \Big(u, \varphi_0^m(u), a \Big) &\leq \lambda \Big(u, \varphi_0^m(u), u_{2n} \Big) + \lambda \Big(u, u_{2n}, a \Big) + \lambda \Big(u_{2n}, \varphi_0^m(u), a \Big) \\ &= \lambda \Big(u, u_{2n}, a \Big) + \lambda \Big(u, \varphi_0^m(u), u_{2n} \Big) + \lambda \Big(\varphi_n^m \Big(u_{2n-1} \Big), \varphi_0^m(u), a \Big) \\ &\leq \lambda \Big(u, u_{2n}, a \Big) + \lambda \Big(u, \varphi_0^m(u), u_{2n} \Big) + \delta \max \left\{ \lambda \Big(u, u_{2n-1}, a \Big), \\ &\lambda \Big(u, \varphi_0^m(u), a \Big), \lambda \Big(u_{2n-1}, u_{2n}, a \Big) \frac{1}{2} \Big[\lambda \Big(u, u_{2n}, a \Big) + \lambda \Big(u_{2n-1}, \varphi_0^m(u), a \Big) \Big] \Big\} \end{split}$$

When $n \to \infty$ and $u_n \to u$

$$\lambda \left(u, \varphi_0^m(u), a \right) \le \delta \max \left\{ \lambda \left(u, \varphi_0^m(u), a \right) \frac{1}{2} \lambda \left(u, \varphi_0^m(u), a \right) \right\}$$

$$\Rightarrow \lambda \left(u, \varphi_0^m(u), a \right) \le \delta \lambda \left(u, \varphi_0^m(u), a \right)$$

$$\Rightarrow \lambda \left(u, \varphi_0^m(u), a \right) = 0 \quad \text{for all} \quad a \in \Omega$$

$$\Rightarrow \varphi_0^m(u) = u$$

$$\Rightarrow u \text{ is a fixed point of } \varphi_0^m.$$
Also we have
$$\lambda(u,\varphi_n^m(u),a) = \lambda(\varphi_0^m(u),\varphi_n^m(u),a)$$

$$\leq \delta \max\{\lambda(u,u,a),\lambda(u,\varphi_n^m(u),a),\lambda(u,\varphi_n^m(u),a)$$

$$\frac{1}{2}(\lambda(u,\varphi_n^m(u),a) + \lambda(u,\varphi_0^m(u),a))\}$$

$$= \delta \max\{\lambda(u,\varphi_n^m(u),a),\frac{1}{2}\lambda(u,\varphi_n^m(u),a)\}$$

$$= \delta \lambda(u,\varphi_n^m(u),a)$$

$$\therefore \lambda(u,\varphi_n^m(u),a) \leq \delta \lambda(u,\varphi_n^m(u),a)$$

$$\Rightarrow \lambda(u,\varphi_n^m(u),a) = 0$$

$$\Rightarrow \varphi_n^m(u) = u$$
Hence u is a fi- point of $\varphi_n^m.$

 \therefore *u* is a common fi-point of φ_0^m and φ_n^m $n \in \mathbb{Y}$.

If possible $u \neq v$ be another fixed point. Then $\varphi_0^m(v) = \varphi_n^m(v) = v$.

Now
$$\lambda(u,v,a) = \lambda(\varphi_0^m(u), \varphi_n^m(v), a)$$

 $\leq \delta \max \left\{ \lambda(u,v,a), \lambda(u, \varphi_0^m(u), a), \lambda(v, \varphi_n^m(v), a), \frac{1}{2} (\lambda(u, \varphi_n^m(v), a) + \lambda(v, \varphi_0^m(u), a)) \right\}$
 $= \delta \max \left\{ \lambda(u,v,a), 0, 0, \frac{1}{2} [\lambda(u,v,a) + \lambda(u,v,a)] \right\}$
 $= \delta \lambda(u,v,a)$
 $\therefore \lambda(u,v,a) \leq \delta \lambda(u,v,a)$
 $\Rightarrow \lambda(u,v,a) = 0$
 $\Rightarrow u = v$

 \therefore *u* is a uniq common fi- point of φ_0^m and φ_n^m .

If we put m = 1, then z is a uniq common fixed point of φ_n in Ω , where $n \in \varphi_*$. **Results -2.2:** The following Corollary-2.3 is proved in [6] by *Rhoades* and the proof follows from Theorem-2.1 by taking m = 1, $\varphi_0 = \varphi$ and $\varphi_n = \psi$ for every $n \in \Psi$.

Conclusions -2.3 : Let $\delta \in (0,1)$. Let φ and ψ be two self maps on a complete 2-met. space (Ω, λ) satisfying

$$\lambda(\varphi(u),\psi(v),a) \leq \delta \max\left\{\lambda(u,v,a),\lambda(u,\varphi(u),a),\lambda(v,\psi(v),a), \\ \frac{1}{2}(\lambda(u,\psi(v),a)+\lambda(v,\varphi(u),a))\right\}$$

for every u, v, a in Ω . Then φ and ψ have a uniq common fi- point in Ω .

REFERENCES

- 1. Frechet, M., Sur quelques points du calcul functionnel. Rend. Circ. Mat. Palermo, Vol-22, pp.1-74, 1906.
- 2. Frechet, M., Eassai de geometrie analylique a une infinite de coordonnees, Nouvelles, Ann. De Math., Vol-8(4), pp. 289-317, 1908.
- 3. Gahler, S., 2-Metrische Raume und ihre Topologische Struktur, Math. Nachr., Vol-26, pp. 115-148, 1963.
- 4. Iseki, K., A Property of orbitally continuous mapping on 2-metric Spaces, Math. Seminar Notes, Kobe Univ., Vol-3, pp. 131-132, 1975.
- 5. *Khan, M.S.,* A theorem on fixed points, Math seminar Notes, Kobe University, Vol-2, pp. 227-228, 1976.
- 6 Rhoades, B. E., A Comparison of various definitions of contractive mappings. Trans. Amer. Math. Soc., Vol-226, pp. 256-290, 1977.