
AIJREAS VOLUME 5, ISSUE 4 (2020, APR) (ISSN-2455-6300)ONLINE

Anveshana’s International Journal of Research in Engineering and Applied Sciences

Anveshana’s International Journal of Research in Engineering and Applied Sciences
EMAILID:anveshanaindia@gmail.com,WEBSITE:www.anveshanaindia.com

1

IMPLEMENTATION OF FAULT TOLERANT MEMORY BASED

UART THROUGH SPI INTERFACE

TELAPROLU ANUSHA
II.M.Tech , Dept of ECE, AM Reddy
Memorial College of Engineering &

Technology, Petlurivaripalem.

I GANESH KUMAR
Asst. Prof, Head-Dept. of ECE, AM

Reddy Memorial College of Engineering
& Technology, Petlurivaripalem.

Abstract

In nanometer technologies, circuits are more and

more sensitive to various kinds of perturbations.

Alpha particles and atmospheric neutrons induce

single-event upsets, affecting memory cells, latches,

and flip-flops. They also induce single-event

transients, initiated in the combinational logic and

captured by the latches and flip-flops associated

with the outputs of this logic. In the past, the major

efforts were related on memories. However, as the

whole situation is getting worse, solutions that

protect the entire design are mandatory. Solutions

for detecting the error in logic functions already

exist, but there are only few solutions allowing the

correction, leading to a lot of hardware overhead

in non processor design. In this paper, we present a

novel technique that includes UART architectures

and an SPI for their implementations, which

reduces the cost of dealys in any kinds of circuit.

Keywords: UART,SPI

1. Introduction

The UART that is going to transmit data

receives the data from a data bus. The data

bus is used to send data to the UART by

another device like a CPU, memory, or

microcontroller. Data is transferred from

the data bus to the transmitting UART in

parallel form. After the transmitting

UART gets the parallel data from the data

bus, it adds a start bit, a parity bit, and a

stop bit, creating the data packet. Next, the

data packet is output serially, bit by bit at

the Tx pin. The receiving UART reads the

data packet bit by bit at its Rx pin. The

receiving UART then converts the data

back into parallel form and removes the

start bit, parity bit, and stop bits. Finally,

the receiving UART transfers the data

packet in parallel to the data bus on

the receiving end: The UART full form is

“Universal Asynchronous

Receiver/Transmitter”, and it is an inbuilt

IC within a microcontroller but not like a

communication protocol (I2C & SPI). The

main function of UART is to serial data

communication. In UART, the

communication between two devices can

be done in two ways namely serial data

communication and parallel data

communication. In serial data

communication, the data can be transferred

through a single cable or line in a bit- by-

bit form and it requires just two cables.

Serial data communication is not

expensive when we compared with parallel

communication. It requires very less

circuitry as well as wires. Thus, this

communication is very useful in

compound circuits compared with parallel

communication. In parallel data

communication, the data can be transferred

through multiple cables at once. Parallel

data communication is expensive as well

as very fast, as its requires additional

hardware and cables. The best examples

for this communication are old printers,

PCI, RAM, etc.

In this communication, there are two types

of UARTs available namely transmitting

UART and receiving UART, and the

communication between these two can be

done directly by each other. For this,

simply two cables are required to

AIJREAS VOLUME 5, ISSUE 4 (2020, APR) (ISSN-2455-6300)ONLINE

Anveshana’s International Journal of Research in Engineering and Applied Sciences

Anveshana’s International Journal of Research in Engineering and Applied Sciences
EMAILID:anveshanaindia@gmail.com,WEBSITE:www.anveshanaindia.com

2

communicate between two UARTs. The

flow of data will be from both the

transmitting (Tx) & receiving (Rx) pins of

the UARTs. In UART, the data

transmission from Tx UART to Rx UART

can be done asynchronously (there is no

CLK signal for synchronizing the o/p bits).

The data transmission of a UART can be

done by using a data bus in the form of

parallel by other devices like a

microcontroller, memory, CPU, etc. After

receiving the parallel data from the bus, it

forms a data packet by adding three bits

like start, stop and parity. It reads the data

packet bit by bit and converts the received

data into the parallel form to eliminate the

three bits of the data packet. In conclusion,

the data packet received by the UART

transfers in parallel toward the data bus at

the receiving end.

2. Preliminaries

UART Block Diagram

The UART block diagram consists of two

components namely the transmitter &

receiver that is shown below. The

transmitter section includes three blocks

namely transmit hold register, shift register

and also control logic. Likewise, the

receiver section includes a receive hold

register, shift register, and control logic.

These two sections are commonly

provided by a baud-rate-generator. This

generator is used for generating the speed

when the transmitter section & receiver

section has to transmit or receive the data.

The hold register in the transmitter

comprises the data-byte to be transmitted.

The shift registers in transmitter and

receiver move the bits to the right or left

till a byte of data is transmitted or

received. A read (or) write control logic is

used for telling when to read or write. The

baud-rate-generator among the transmitter

and the receiver generates the speed that

ranges from 110 bps to 230400 bps.

Typically, the baud rates of

microcontrollers are 9600 to 115200. As

the R and T in the acronym dictate,

UARTs are responsible for both sending

and receiving serial data. On the transmit

side, a UART must create the data packet -

appending sync and parity bits - and send

that packet out the TX line with precise

timing (according to the set baud rate). On

the receive end, the UART has to sample

the RX line at rates according to the

expected baud rate, pick out the sync bits,

and spit out the data. More advanced

UARTs may throw their received data into

a buffer, where it can stay until the

microcontroller comes to get it. UARTs

will usually release their buffered data on a

first-in-first-out (FIFO) basis. Buffers can

be as small as a few bits, or as large as

thousands of bytes.

Figure 1: Internal UART block diagram

An UART (Universal Asynchronous

Receiver/ Transmitter) is the microchip

with programming that controls a

computer's interface to its attached serial

devices. UART is an integrated circuit

designed for implementing the interface

AIJREAS VOLUME 5, ISSUE 4 (2020, APR) (ISSN-2455-6300)ONLINE

Anveshana’s International Journal of Research in Engineering and Applied Sciences

Anveshana’s International Journal of Research in Engineering and Applied Sciences
EMAILID:anveshanaindia@gmail.com,WEBSITE:www.anveshanaindia.com

3

for serial communications. It provides the

computer with the RS-232C Data Terminal

Equipment (DTE) interface so that it can

"talk" to and exchange data with modems

and other serial devices . As part of this

interface, the UART also: Converts the

bytes it receives from the system along

parallel circuits into a single serial bit

stream for outbound transmission On

inbound transmission, converts the serial

bit stream into the bytes that the system

handles. Adds a parity bit (if it's been

selected) on outbound transmissions and

checks the parity of incoming bytes (if

selected) and discards the parity bit Adds

start and stop delineators on outbound and

strips them from inbound transmissions

May handle other kinds of interrupt and

device management that require

coordinating the on-chip communication

of operation with high speed devices. Wait

until the incoming signal becomes '0 ' (the

start bit) and then start the sampling tick

center. When the center reaches 7, the

incoming signal reaches the middle

position of the start bit. Clear the center

and restart.

The UART includes both transmitter and

receiver. The transmitter is a special shift

register that loads data in parallel and then

shifts it out bit-by-bit. The receiver shifts

in data bit-by-bit and reassembles the data

byte • Wait until the incoming signal

becomes '0 ' (the start bit) and then start

the sampling tick center. When the center

reaches 7, the incoming signal reaches the

middle position of the start bit. Clear the

center and restart.

Serial Peripheral Interface (SPI)

The SPI is a synchronous serial

communication interface specification

used for short-distance communication,

primarily in embedded systems. The

interface was developed by Motorola in

the mid-1980s and has become a de

facto standard. Typical applications

include Secure Digital cards and liquid

crystal displays. SPI devices communicate

in full duplex mode using a master-

slave architecture with a single master.

The master device originates the frame for

reading and writing. Multiple slave-

devices are supported through selection

with individual slave select (SS),

sometimes called chip select (CS),

lines.Sometimes SPI is called a four-

wire serial bus, contrasting with three-

, two-, and one-wire serial buses. The SPI

may be accurately described as a

synchronous serial interface,
[1]

 but it is

different from the Synchronous Serial

Interface (SSI) protocol, which is also a

four-wire synchronous serial

communication protocol. The SSI protocol

employs differential signaling and

provides only a single simplex

communication channel. SPI is one master

and multi slave communication.

Figure 2: master and three independent

slaves

In the independent slave configuration,

there is an independent chip select line for

each slave. This is the way SPI is normally

used. The master asserts only one chip

select at a time.Pull-up resistors between

power source and chip select lines are

https://en.wikipedia.org/wiki/Synchronous_circuit
https://en.wikipedia.org/wiki/Serial_communication
https://en.wikipedia.org/wiki/Serial_communication
https://en.wikipedia.org/wiki/Embedded_systems
https://en.wikipedia.org/wiki/Motorola
https://en.wikipedia.org/wiki/De_facto_standard
https://en.wikipedia.org/wiki/De_facto_standard
https://en.wikipedia.org/wiki/Secure_Digital
https://en.wikipedia.org/wiki/Liquid_crystal_display
https://en.wikipedia.org/wiki/Liquid_crystal_display
https://en.wikipedia.org/wiki/Full_duplex
https://en.wikipedia.org/wiki/Master-slave_(technology)
https://en.wikipedia.org/wiki/Master-slave_(technology)
https://en.wikipedia.org/wiki/Frame_(networking)
https://en.wikipedia.org/wiki/Slave_select
https://en.wikipedia.org/wiki/Serial_Peripheral_Interface#Three-wire_serial_buses
https://en.wikipedia.org/wiki/Serial_Peripheral_Interface#Three-wire_serial_buses
https://en.wikipedia.org/wiki/I%C2%B2C
https://en.wikipedia.org/wiki/1-Wire
https://en.wikipedia.org/wiki/Serial_Peripheral_Interface#cite_note-1
https://en.wikipedia.org/wiki/Synchronous_Serial_Interface
https://en.wikipedia.org/wiki/Synchronous_Serial_Interface
https://en.wikipedia.org/wiki/Differential_signaling
https://en.wikipedia.org/wiki/Simplex_communication
https://en.wikipedia.org/wiki/Simplex_communication

AIJREAS VOLUME 5, ISSUE 4 (2020, APR) (ISSN-2455-6300)ONLINE

Anveshana’s International Journal of Research in Engineering and Applied Sciences

Anveshana’s International Journal of Research in Engineering and Applied Sciences
EMAILID:anveshanaindia@gmail.com,WEBSITE:www.anveshanaindia.com

4

recommended for systems where the

master's chip select pins may default to an

undefined state.
[3]

 When separate software

routines initialize each chip select and

communicate with its slave, pull-up

resistors prevent other uninitialized slaves

from responding.

Since the MISO pins of the slaves are

connected together, they are required to be

tri-state pins (high, low or high-

impedance), where the high-impedance

output must be applied when the slave is

not selected. Slave devices not supporting

tri-state may be used in independent slave

configuration by adding a tri-state buffer

chip controlled by the chip select

signal.
[3]

 (Since only a single signal line

needs to be tristated per slave, one typical

standard logic chip that contains four

tristate buffers with independent gate

inputs can be used to interface up to four

slave devices to an SPI bus.)

3. Proposed Method

The previous descriptions detailed the

UART of the memories to re-execute the

K clock cycles before the error detection

signal becomes active. However, before

the retry phase starts, the subsequent

pipeline connected to the memory output

must be brought back to its Kth previous

state. So, additionally to the CAM

associated with the memory, an UART

that preserves the related pipeline state

must be inserted. This UART depends of

the CAM implementation, and if a

checkpoint SPI rollback implementation or

a K-cycle SPI rollback implementation is

considered. Fig. 7 describes the global

UART implementation of a RAM (or a

register file) with the first and the second

implementation. The read data are saved

during several clock cycles in the CAM

and then it is saved in the UART for the

registers related to the subsequent pipeline

during a few more cycles. To perform a K-

cycle SPI rollback, the CAM must save the

K last read operations. However, instead

of using an FIFO of K + P − 1 stages to

save the data of the subsequent pipeline of

P-stages, like in Section II-A, an FIFO of

P − 1 stages is sufficient.

Fig. 3. Global memory UART

Therefore, the read data are saved in the

CAM during the K clock cycles after they

are read, and then during P − 1 additional

cycles inside the registers UART.

Therefore, the global implementation

saves the read data during K +P−1 clock

cycles as in Section II-A. The data of the

FIFO are used to restore the context of the

circuit K clock cycles before, and the data

of the CAM to perform another time the K

last operations of the circuit. Obviously,

the CAM is not used during the SPI

rollback phase. On the other hand, as the

third implementation save the data that are

written in the memory instead of those that

are read, the register UART for the third

implementation (Fig. 3) must be an FIFO

of K + P −1 stages. In case a checkpoint

SPI rollback implementation is chosen, the

results are quite different. the re-execution

process may involve a complete retry set.

Therefore, the CAM used in each

implementation must meet that

requirement. To evaluate that cost, let us

consider the best case for the retry sets: it

https://en.wikipedia.org/wiki/Serial_Peripheral_Interface#cite_note-Better_SPI_Bus_Design_in_3_Steps-3
https://en.wikipedia.org/wiki/Pull-up_resistor
https://en.wikipedia.org/wiki/Pull-up_resistor
https://en.wikipedia.org/wiki/Serial_Peripheral_Interface#cite_note-Better_SPI_Bus_Design_in_3_Steps-3

AIJREAS VOLUME 5, ISSUE 4 (2020, APR) (ISSN-2455-6300)ONLINE

Anveshana’s International Journal of Research in Engineering and Applied Sciences

Anveshana’s International Journal of Research in Engineering and Applied Sciences
EMAILID:anveshanaindia@gmail.com,WEBSITE:www.anveshanaindia.com

5

must avoid that the least recently saved

context to be contaminated by an error. So,

during a retry set the next save must start

at least K clock cycles after the beginning

of the retry set. If PM is the largest

pipeline size of all regular pipeline, then

each CAM must save the N + K last

operations, with N ≥ K + PM − 1. For the

third implementation, the register UART,

be composed of two FIFOs of P-stages. On

the other hand, for the two first

implementations, the requested

checkpoints will be always saved either

inside the CAM or in a register UART that

save the least recent checkpoint (Fig. 4).

Fig. 4. Memory rollback operation

Therefore, the register UART in this

implementation has only one FIFO of P-

stages. So, the third CAM implementation

always lead to a higher hardware

overhead, due to the additional mechanism

used to restore the context of the

subsequent pipeline. Notice that those

solutions differ from another solution

described in [36], which used a read buffer

and not a CAM. This solution is dedicated

to instruction replay, and do not consider

the global state restoration K clock cycles

before of the subsequent pipeline.

However, the interest of this solution is

that they avoid having a priority circuit by

performing a write back of the read buffer

content inside the register file before the

instruction replay starts [36]. Nevertheless,

this idea is compatible with the first

memory UART we proposed that save

both read data and read addresses. The two

other implementations cannot use this

principle.

4. SIMULATION RESULTS

Fig. 5: Simulation output

The above result shows the simulation

analysis of first and second

implementation of the proposed method.

Here clk, address, data, cs(chip select)

,we(write enable) ,oe(output enable) are

the input signals, remaining all are output

signals. Data out RAM should be

monitored with respect to the address

input. Initially, when we=1 then all the

data input will be stored into RAM. Then

memory based error checking operation

performs using SPI rollbacks. Finally,

ram_oe will be activated. Then Data out

RAM signal will generates. DATA out

CAM should be monitored with respect to

the CAM address out. After error

correction,cam1 oe becomes 1, then data

out will be generated. The valid flag

becomes active high, when ever error

occurred, it will be auto corrected by using

the proposed system.

AIJREAS VOLUME 5, ISSUE 4 (2020, APR) (ISSN-2455-6300)ONLINE

Anveshana’s International Journal of Research in Engineering and Applied Sciences

Anveshana’s International Journal of Research in Engineering and Applied Sciences
EMAILID:anveshanaindia@gmail.com,WEBSITE:www.anveshanaindia.com

6

Fig. 6: Design summary

The above table represents the design

summary such as area utilized by proposed

method. There is total of 35200 slice

register available but only 310 of it used

by the design. Similarly, out of 17600 look

up tables, only 235 used.

Fig. 7: Time summary

The above analysis shows the time

summary of proposed design. It represents

the total path delays and end to end delays

generated in the design. The total 1.547 of

ns delay is consumed.

Fig. 8: Power summary

The above analysis shows the power

summary of proposed design. It represents

the total power consumed and power

dissipation in the design. The total 0.206

watts of power is consumed.

CONCLUSION: We have presented

several solutions to implement a SPI

rollback technique at moderate hardware

cost: a fixed K-cycle SPI rollback, or a

checkpoint SPI rollback. It was also

proposed three different CAM

implementations for the massive storage

preservation. The K-cycle SPI rollback

with the two first CAM implementations

provide very low hardware overhead

compared to state-of-the-art technique by

putting in common the data state preserves

mechanism of several registers and the

data state preserve mechanism of the

memory. However, the downside is the

number of cycles to perform the SPI

rollback, as the stateof-the-art technique

performs the SPI rollback in one clock

cycle. In some cases, the checkpoint SPI

rollback implementation provides a lower

hardware overhead in case the target

architecture has not a lot of memories

output but has many irregularities. To have

a complete soft-error tolerant

implementation, we add an advance ECC

implementation technique for embedded

memories. It allows using ECC without

any speed penalty, except in the rare case

an error is detected. Due to the large part

dedicated to the embedded memories in

many modern designs, the global

implementation of both techniques

produces a very low hardware overhead.

To have a complete implementation of that

technique, we should add a soft-error

detection technique mentioned in the

introduction. Then, we could test the fault

resilient property of the whole design. In

addition, an improvement of the proposed

technique would concern very large

designs for which the proposed SPI

rollback implementation is time-

consuming even with an automated tool.

AIJREAS VOLUME 5, ISSUE 4 (2020, APR) (ISSN-2455-6300)ONLINE

Anveshana’s International Journal of Research in Engineering and Applied Sciences

Anveshana’s International Journal of Research in Engineering and Applied Sciences
EMAILID:anveshanaindia@gmail.com,WEBSITE:www.anveshanaindia.com

7

Moreover, the SPI rollback itself takes a

lot of time in this kind of design. By

splitting the whole design in several parts

from which the SPI rollback could be

performed independently in each of them,

it may improve both of those mentioned

issue at a moderate hardware cost.

REFERENCES

[1] R. C. Baumann, “Soft errors in advanced

computer systems,” IEEE Design Test. Comput.,

vol. 22, no. 3, pp. 258–266, May/Jun. 2005.

[2] N. P. Rao and M. P. Desai, “A detailed

characterization of errors in logic circuits due to

single-event transients,” in Proc. Euromicro Conf.

Digit. Syst. Design, Funchal, Portugal, 2015, pp.

714–721.

[3] B. Narasimham et al., “Characterization of

digital single event transient pulse-widths in 130-

nm and 90-nm CMOS technologies,” IEEE Trans.

Nucl. Sci., vol. 54, no. 6, pp. 2506–2511, Dec.

2007.

[4] M. P. Baze and S. P. Buchner, “Attenuation of

single event induced pulses in CMOS

combinational logic,” IEEE Trans. Nucl. Sci., vol.

44, no. 6, pp. 2217–2223, Dec. 1997.

[5] S. Buchner, M. Baze, D. Brown, D. McMorrow,

and J. Melinger, “Comparison of error rates in

combinational and sequential logic,” IEEE Trans.

Nucl. Sci., vol. 44, no. 6, pp. 2209–2216, Dec.

1997.

[6] J. Benedetto et al., “Heavy ion-induced digital

single-event transients in deep submicron

processes,” IEEE Trans. Nucl. Sci., vol. 51, no. 6,

pp. 3480–3485, Dec. 2004.

[7] M. A. Bajura et al., “Models and algorithmic

limits for an ECC-based approach to hardening

sub-100-nm SRAMs,” IEEE Trans. Nucl. Sci., vol.

54, no. 4, pp. 935–945, Aug. 2007.

[8] T. Bonnoit, M. Nicolaidis, and N.-E. Zergainoh,

“Using error correcting codes without speed

penalty in embedded memories: Algorithm,

implementation and case study,” J. Electron. Test.,

vol. 29, no. 3, pp. 383–400, Jun. 2013.

[9] P. Papavramidou and M. Nicolaidis, “Test

algorithms for ECC-based memory repair in

ultimate CMOS and post-CMOS,” IEEE Trans.

Comput., vol. 65, no. 7, pp. 2284–2298, Jul. 2015.

[10] R. Vemu, A. Jas, J. A. Abraham, S. Patil, and

R. Galivanche, “A lowcost concurrent error

detection technique for processor control logic,” in

Proc. DATE, Munich, Germany, 2008, pp. 897–

902.

