
AIJREAS VOLUME 4, ISSUE 8 (2019, AUG) (ISSN-2455-6300)ONLINE

Anveshana’s International Journal of Research in Engineering and Applied Sciences

Anveshana’s International Journal of Research in Engineering and Applied Sciences

EMAILID:anveshanaindia@gmail.com,WEBSITE:www.anveshanaindia.com
53

IDENTIFICATION OF HOT PATH FOR CODE EXECUTION

OPTIMIZATION

GRANDHI PRASUNA

Reasearch Scholar, Dept. Of CSE,

Acharya Nagarjuna University, AP

grandhiprasuna@gmail.com

Dr. O. NAGA RAJU

Asst. Professor & Head, Dept. Of

Computer Science, Govt. Degree College,

Macherla, AP

Abstract— Optimization of the source code is a

widely accepted process for managing the

performance of any software applications or

components. The highest level of software

optimization can be identified with the help of highly

used control paths of the applications. These highly

used control paths are considered as hot path for

the application control flow. Number of parallel

research outcomes have demonstrated significant

outcomes for designing the hot path flow of the

algorithm. Nevertheless, majority of the parallel

research works have only identified the paths and

not deployed the same concept for code optimization

on the run time. Henceforth, this work demonstrates

a novel algorithm for code optimization using hot

path.

Keywords— Code Conversion, Parallel Execution,

GPU, CPU, CUDA, NVIDIA, CUDA Stack

I. INTRODUCTION

The evaluations of the GPUs are primarily caused

by the enhancement of high graphics in the game

development industry and scientific applications

demanding more processing capabilities.The 3D

rendering of the graphics modules of the games

need the highly parallel and programmable

pipelined processors. These can deliver parallel

execution in significantly low cost. The measures of

the performance of graphics processing units are

completely taken over the performance of the

central processing units. The notable works by

Shane Ryoo et. al. [1] have demonstrated the

improvements of execution time for multi-threaded

applications on GPUs compared to the CPUs. The

surprising improvements of reducing execution time

have forced multiple research organizations and

processor architecting industries to build more

sophisticated GPUs for general-purpose floating-

point conversions and calculations. R. Kresch et al

[2] have demonstrated the evaluation and scaling up

of the general-purpose GPUs from 1970 till the date.

The preliminary focus for the development was to

make the GPUs ready for general purpose

calculations in order to cater the parallel processing

benefits to the general-purpose applications like

scientific application or customer centric

applications or the business applications or the

financial applications. The recent advancements as

demonstrated by D. L. N. Research [3] can delivery

500 Giga Flops, which is nearly four timesimproved,

compared to the CPU cores available in the market.

Significant improvements demonstrated by the

GPUs for the application development industry

made a substantial impact among the researchers

and the demands for programming in parallel

languages have increased. Nevertheless, the

programming in parallel languages that demands

higher efficiencies, which is difficult to obtain due

to invisibility of the GPU components, made the

task challenging for application developers. In the

other hand programming languages, which can take

the benefits of parallel cores for any GPU, like

CUDA has evolved. Yet, many legacy applications

are built using C, a primary serial programming

language, also demands to be upgraded to take the

advantages of available GPU. Thus,the conversion

of the code is a primary task for the developers. This

includes evaluation of kernels, anindependent set of

instruction finding, loop controlling and unrolling

and finally the parallelization of the code using

threads. Consequently, the bottleneck remains the

same as demand for parallelization and building an

expert development team.

Nonetheless, this leads to a demand for finding

the rule sets to convert the source code to CUDA

AIJREAS VOLUME 4, ISSUE 8 (2019, AUG) (ISSN-2455-6300)ONLINE

Anveshana’s International Journal of Research in Engineering and Applied Sciences

Anveshana’s International Journal of Research in Engineering and Applied Sciences

EMAILID:anveshanaindia@gmail.com,WEBSITE:www.anveshanaindia.com
54

codes automatically and take the recompenses of

general-purpose GPUs.

II. LITERATURE SURVEY

The landmark for the parallel architecture was

introduced by NVIDIA in the year of 2006 called

Computer Unified Device Architecture or CUDA

[3]. This invention was to open the gate for high

performance computing on GPU to leverage the

execution time for scientific or high graphical

applications. The architecture was widely accepted

by researchers and developers as the architecture

was made available to personal computing and as

well as to the servers running low to medium to high

computational loads. Another reason for this wide

acceptance was the use of multicore processors and

shared memory architecture. The notable proof of

this concept was presented by Shane Ryoo et. al [4]

on performing highly complex scientific

applications such as Fast Fourier Transform

optimization.

NVIDIA also developed a software development

kit or SDK consisting of hardware simulation,

drivers, libraries and device drivers for the benefit of

the developers. CUDA software stack is composed

of several layers: a hardware driver (CUDA Driver),

an API and the runtime (CUDA Runtime), two

higher-level mathematical libraries (CUDA

Libraries) of general purposes [Fig 1].

Fig. 1 CUDA Software Stack

The improvement of GPU performance over the

traditional CPU architecture was evolved over the

hardware organization. NVIDIA strongly

recommended that in order to achieve the higher

GPU utilization and optimal use of memory

hierarchy are two major reasons for performance

improvements of GPUs. The notable work by

Christian Tenllado et. al [5] have founded the

guidelines for a parallel code generation from a

serial algorithm majorly focuses on these two

principles.

Researchers represent several experiments aimed

at analysing their relative importance. Results

indicate that code transformations that target

efficient memory usage are the major determinant of

actual performance. Overall, they ensure the best

performance even if some resources remain

underutilized. Therefore, maximizing occupancy

should be examined at a later stage in the

compilation process, once data related issues have

been properly addressed.

NVIDIA compiler NVCC can optimize code but

the best optimized code is one should write at

assembly level. But it looks very difficult in big

algorithms and projects. So, to find out occupancy is

an important issue.

With the availability of the NVIDIA GPU,

research focuses on the automatic code conversion

techniques for serial codes into parallel. However,

the automatic conversion is always debated due to

lack of control during the code conversion.

Henceforth, in order to overcome this designated

problem, this work formulates all necessary

guidelines formulated by various researchers by

their notable works.

TABLE I: GUIDELINES FOR AUTOMATIC CODE CONVERSION

AIJREAS VOLUME 4, ISSUE 8 (2019, AUG) (ISSN-2455-6300)ONLINE

Anveshana’s International Journal of Research in Engineering and Applied Sciences

Anveshana’s International Journal of Research in Engineering and Applied Sciences

EMAILID:anveshanaindia@gmail.com,WEBSITE:www.anveshanaindia.com
55

Researchers / Contributors Years Recommendations

B. R. Neha Patil [6] 2007 Focus on the task of parallelization of the

algorithms rather than spending time on

their implementation.

V. Rajaraman, C. Siva Ram Murthy [7] 2000 Support heterogeneous computation where

applications use both the CPU and GPU

V. Rajaraman, C. Siva Ram Murthy [7] 2000 Serial portions of applications are run on

the CPU, and parallel portions are run on

to the GPU

Setoain, Christian Tenllado, Manuel Arenaz,

and Manuel Prieto [1]

2013 Enable heterogeneous systems (CPU +

GPU) CPU and GPU are separate devices

with separate DRAMs

Setoain, Christian Tenllado, Manuel Arenaz,

and Manuel Prieto [1]

2013 Generate a template based on calculated

occupancy.

Setoain, Christian Tenllado, Manuel Arenaz,

and Manuel Prieto [1]

2013 Conversion of C code in a way it is in the

CUDA C template.

B. R. Neha Patil [6] 2007 Optimize the source code and measure the

performance GPU & CPU of the program

Henceforth, considering the notable

recommendations from the renounced research

outcomes, this work analyses the CUDA

architecture and attempt to propose the code

conversion algorithm.

III. NOVEL CODE CONVERSION ALGORITHM

With the collected recommendations from

various research attempts, this work proposes a

novel algorithm to convert serial C programs, which

is designed to run on the CPU, into a parallel CUDA

C program, which can take the complete advantages

of the benefits provided by GPUs.

The proposed algorithm is described into 2

individual components as Algorithm 1 and

Algorithm 2. Here the Algorithm 1 takes care of the

conversion of functions and independence check for

the functions, finally converts the functions into

CUDA syntax.

In the other hand, the second algorithm converts

the basic syntaxes into CUDA C syntaxes and also

converts the independent modules into CUDA

threads to run on GPUs.

The steps of the algorithm are described here:

Algorithm: Automatic Source Code Conversion

for Optimization

Step-1. Read the C Source File

Step-2. Find the initial variables and kernel

variables [Assumption: The variables are

expected to be declared in the entry section of

the source code]

a. Find the global variable instances and

library files

b. Build the symbol table for all the

notation

Step-3. Find the declared functions

a. If the function is main method

i. Maintain the syntax

b. Else, In case of non-main method

i. Convert the functions as

global function

ii. Include __global__ clause for

each

Step-4. Find the functional dependencies

a. If the function has a dependency

i. Write the function as a device

definition function

ii. Repeat Step 3.b

b. Else, In case of independent functions

i. Continue

Step-5. Finalize the conversion as main.cu file

The results of this algorithm is also been

discussed in this work in the next section.

IV. RESULTS AND DISCUSSION

The intension of this work is to demonstrate the

improvement of the performance for parallel

AIJREAS VOLUME 4, ISSUE 8 (2019, AUG) (ISSN-2455-6300)ONLINE

Anveshana’s International Journal of Research in Engineering and Applied Sciences

Anveshana’s International Journal of Research in Engineering and Applied Sciences

EMAILID:anveshanaindia@gmail.com,WEBSITE:www.anveshanaindia.com
56

application over serial application. The automatic

conversion of the source code is always debated and

hence this work provides much larger and concrete

proofs for the demonstration of the improvements.

In this section, the results demonstrate the

converted source code and analyses the serial and

parallel execution time.

A. Analysis of the Performance on Binary Search

The first analysis is demonstrated on the popular

binary search code. Firstly, the source C program is

converted into CUDA C automatically using the

Novel Code Converter proposed in this work [Table

– 2].

TABLE II: CUDA – C EQUIVALENT & CONVERTED CODE FOR

BINARY SEARCH - AS EXAMPLE

Recommendations

#include<stdio.h>

__global__ void kernel(int *gpu_bb,int *gpu_nn,int

*gpu_aa,int *gpu_cc)

{

 int gpu_i=threadIdx.x+blockIdx.x*blockDim.x;

 if(*gpu_bb==gpu_aa[gpu_i])

 {

 *gpu_cc=1;

 }

}

int main()

{

 int a[90000],b,mid,n,i;

 int c=0;

 //Kernel Variables

 int *g_p,*g_n,*g_b,*g_a,*g_c;

 //CUDA GRID BLOCK SIZE AND NUMBER OF

BLOCKS

 int block_size = 32;

 const int N = 90000; // Number of elements in arrays

 int n_blocks = N/block_size + (N%block_size == 0 ? 0:1);

 size_t size = 90000 * sizeof(int);

// Memory Allocation

 cudaMalloc((void**)&g_p,sizeof(int)); // Allocate array on

devic

 cudaMalloc((void**)&g_b,sizeof(int)); // Allocate array on

devic

 cudaMalloc((void**)&g_c,sizeof(int)); // Allocate array on

devic

 cudaMalloc((void**)&g_a,size); // Allocate array on devic

 n=90000;

 for(i=0;i<n;i++)

 {

 a[i]=i;

 }

 b=100000;

// Copy Data to device from host

cudaMemcpy(g_b,&b,sizeof(int),cudaMemcpyHostToDevice);

cudaMemcpy(g_n,&n,sizeof(int),cudaMemcpyHostToDevice);

cudaMemcpy(g_c,&c,sizeof(int),cudaMemcpyHostToDevice);

 cudaMemcpy(g_a,&a,size,cudaMemcpyHostToDevice);

// call kernel

 kernel<<<n_blocks, block_size>>>(g_b,g_n,g_a,g_c);

// Retrieve result from device and store it in host array

cudaMemcpy(&bg_b,,sizeof(int),cudaMemcpyDeviceToHost);

cudaMemcpy(&n,g_n,sizeof(int),cudaMemcpyDeviceToHost);

cudaMemcpy(&c,g_c,sizeof(int),cudaMemcpyDeviceToHost);

 cudaMemcpy(&a,g_a,size,cudaMemcpyDeviceToHost);

 // Free GPU Variables

 cudaFree(g_b);

 cudaFree(g_n);

 cudaFree(g_c);

 cudaFree(g_a);

if(c==0)

 {

 printf("The number is not found\n\n");

 }

 else

 {

 printf("The number is found\n\n");

 }

 system("pause");

 return 0;

}

Furthermore, the comparison for CPU time is also

been analysed [Table – 3].

TABLE III: CPU VS GPU EXECUTION TIME FOR BINARY SEARCH

Diagnosis Session

Duration

10 Seconds 20 Seconds 30 Seconds 40 Seconds 50 Seconds

C on CPU 39 39 78 78 117 117 156 156 195 195

CUDA-C on GPU 29 29 58 58 87 87 116 116 145 145

Improvement

(%)

74.36 74.36 74.36 74.36 74.36 74.36 74.36 74.36 74.36 74.36

AIJREAS VOLUME 4, ISSUE 8 (2019, AUG) (ISSN-2455-6300)ONLINE

Anveshana’s International Journal of Research in Engineering and Applied Sciences

Anveshana’s International Journal of Research in Engineering and Applied Sciences

EMAILID:anveshanaindia@gmail.com,WEBSITE:www.anveshanaindia.com
57

The result is also been analysed visually for CPU

[Fig – 4] & for GPU [Fig – 5].

Fig. 2CPU Analysis for Binary Search

Also, this work analyses the Hot Path for Code

Execution analysis [Table – 4].

Fig. 3GPU Analysis for Binary Search

TABLE IV: HOT CODE EXECUTION PATH UTILIZATION –

BINARY SEARCH

Code Name Serial

Execution –

Hot Path

Utilization

(%)

Parallel

Execution –

Hot Path

Utilization

(%)

Binary Search 81.55 79.46

The result is also been visually analysed for CPU

[Fig – 6] and GPU [Fig – 7]

Fig. 4 Serial Hot Code Path for Binary Search

Fig. 5 Parallel Hot Code Path for Binary

Search

Thus, with the light of the obtained results, this

work presents the conclusions in the next section.

V. CONCLUSIONS

The interest for programmed change of the

sequential code to resemble codes so as to decrease

the execution time and destruction the reality of

higher efficiencies in the workforce is constantly

under a concentration for the examination. This

work sends a novel calculation to change over

sequential C codes into equal NVIDIA CUDA codes

to take the most extreme advantages from the GPUs

accessible. The programmed change system,

AIJREAS VOLUME 4, ISSUE 8 (2019, AUG) (ISSN-2455-6300)ONLINE

Anveshana’s International Journal of Research in Engineering and Applied Sciences

Anveshana’s International Journal of Research in Engineering and Applied Sciences

EMAILID:anveshanaindia@gmail.com,WEBSITE:www.anveshanaindia.com
58

proposed and exhibited right now, just lessens the

ideal opportunity for the transformation,

additionally decreases 80% of the execution time for

heritage sequential projects from different

algorithmic methodologies. The transformation

system exhibited a 100% comparable outcome upon

execution and works for all projects composed after

the central rules of the code advancements. This

work is to be viewed as one of the gauges for

additional examination and a commitment towards

programmed code interpretation for heritage

frameworks so as to make the computational help

for current improvements.

REFERENCES

[1] Shane Ryoo, Sam S. Stone, "Optimization

principles and application performance

evaluation of multithreaded GPU using

CUDA", Center for Reliable and high-

performance Computing University of Illinois

at Urbana-Champaign NVIDIA Corporation,

2009.

[2] R. Kresch and N. Merhav, "Fast DCT domain

altering using the DCT and the DST," HPL

Technical Report HPL-95-140, December

1995.

[3] D. L. N. Research, "NVIDIA gpu architecture

& implications,", NVIDIA Corporation 2007.

[4] Shane Ryoo, Christopher I. Rodrigue, Sara S.

Baghsorkhi, "Optimizing the Fast Fourier

Transform on a Multi-core Architecture,"

2006-2008.

[5] Setoain, Christian Tenllado, Manuel Arenaz,

and Manuel Prieto, "Towards Automatic Code

Generation for GPU architectures", Computer

Architecture Group, Department of Electronics

and Systems, University of A Coruna,Spain.

[6] B. R. Neha Patil, "SFast and parallel

implementation of image processing algorithm

using cuda technology on gpu hardware", ",

tech. rep., Department of Electrical &

Computer and Systems Engineering,

Rensselaer Polytechnic Institute,Troy, NY

12180-3590.

[7] V. Rajaraman, C. Siva Ram Murthy, "Parallel

Computers Architecture and Programming",

Prentice Hall,2000,ISBN-81-203-1621-5.

