
AIJREAS VOLUME 2, ISSUE 12 (2017, DEC) (ISSN-2455-6300)ONLINE

Anveshana’s International Journal of Research in Engineering and Applied Sciences

Anveshana’s International Journal of Research in Engineering and Applied Sciences
EMAILID:anveshanaindia@gmail.com,WEBSITE:www.anveshanaindia.com

115

A SIMPLIFIED STUDY OF EMBEDDED SYSTEM: REFERENCE

ARCHITECTURE DESIGN FOR DIFFERENT DOMAINS OF EMBEDDED

SYSTEMS

AKULA RAJITHA

M.Tech, Department of ECE,

CMR Technical Campus

Telangana.

Abstract:

In this paper, we have evolved generic software

architecture for a domain specific distributed

embedded system. The system under consideration

belongs to the Command, Control and

Communication systems domain. The systems in

such domain have very long. A number of

techniques and software tools for embedded system

design have been recently proposed. However, the

current practice in the designer community is

heavily based on manual techniques and on past

experience rather than on a rigorous approach to

design. To advance the state of the art it is

important to address a number of relevant design

problems and solve them to demonstrate the power

of the new approaches. We analyze the results

obtained with our approach and compare them

with the existing design underlining the advantages

offered by a systematic approach to embedded

system design in terms of performance and design

time. The content of this paper addresses the issues

regarding the reference architecture design for

different domains in the context of a system of

systems that is specific to today’s embedded

systems. The reference architecture contains core

services of the domains included in abstract

features package. The appropriate architectural

style is provided by a knowledge base through

service taxonomy. Services, commonality,

variability management and rules for product

derivation and configuration are the main issues

considered in the architectural design process.

Key words: embedded systems, Domain- Software

Architecture, cross domain product line, Reference

Architecture.

1.0 Introduction:

Embedded systems are usually evaluated

according to a large variety of criteria such

as performance, cost, flexibility, power

and energy consumption, size and weight.

As these kinds of non-functional

objectives are very often conflicting, there

is no single optimal design but a variety of

choices that represent different design

trade-offs. As a result, a designer is not

only interested in one implementation

choice but in a well chosen set that best

explores these trade-offs. In addition,

embedded systems are often complex in

that they consist of heterogeneous

subcomponents such as dedicated

processing units, application-specific

instruction set processors, general purpose

computing units, memory structures and

communication means like buses or

networks. Therefore, the designer is faced

with a huge design space. Embedded

systems are resource constrained because

of tight cost bounds. Therefore, there is

resource sharing on almost all levels of

abstraction and resource types that makes

it difficult for a designer to assess the

quality of a design and the final effect of

design choices. This combination of a

huge design space on the one hand and the

complexity in interactions on the other

hand makes automatic or semi-automatic

(interactive) methods for exploring

different designs important. As a

consequence, embedded systems are

usually domain-specific and try to use the

characteristics of the particular application

domain in order to arrive at competitive

implementations. In order to achieve

acceptable design times though, there is a

mailto:anveshanaindia@gmail.com
http://www.anveshanaindia.com/

AIJREAS VOLUME 2, ISSUE 12 (2017, DEC) (ISSN-2455-6300)ONLINE

Anveshana’s International Journal of Research in Engineering and Applied Sciences

Anveshana’s International Journal of Research in Engineering and Applied Sciences
EMAILID:anveshanaindia@gmail.com,WEBSITE:www.anveshanaindia.com

116

need for automatic or semi-automatic

(interactive) exploration methods that take

into account the application domain, the

level of abstraction on which the

exploration takes place and that can cope

with conflicting criteria. Following the

usual hierarchical approach to embedded

system design, there are several layers of

abstraction on which design choices must

be taken. Above the technology layer one

may define the abstraction levels ’logic

design and high level synthesis’,

’programmable architecture’, ’software

compilation’, ’task level’ and ’distributed

operation’. These terms are explained in

more detail in Section 2. Design space

exploration takes place on all of these

layers and is a generic tool within the

whole design trajectory of embedded

systems. Embedded systems are found in a

variety of common electronic devices such

as consumer electronics ex. Cell phones,

pagers, digital cameras, VCD players,

portable Video games, calculators, etc.,

We argue with our experiences in the

software architectures design and analysis

for embedded systems domains and other

researchers’ recent studies that will be

revealed during the paper.

Figure 1: Embedding of exploration in a

hierarchical design trajectory for

Embedded Systems.

The processing units of the embedded

system:

1. Processor in an Embedded System A

processor is an important unit in the

embedded system hardware. A

microcontroller is an integrated chip that

has the processor, memory and several

other hardware units in it; these form the

microcomputer part of the embedded

system. An embedded processor is a

processor with special features that allow it

to be embedded into a system. A digital

signal processor (DSP) is a processor

meant for applications that process digital

signals.

2. Commonly used microprocessors,

microcontrollers and DSPs in the small-,

medium-and large scale embedded

systems.

3. A recently introduced technology that

additionally incorporates the application-

specific system processors (ASSPs) in the

embedded systems.

4. Multiple processors in a system.

Embedded systems are a combination of

hardware and software as well as other

components that we bring together into

products such as cell phones, music player,

a network router, or an aircraft guidance

system. They are a system within another

system as we see in Figure 2

Figure 2: Simple embedded system

2.0 Literature Review:

Abdoulaye Gamatie, (2011), Modern

embedded systems integrate more and

more complex functionalities. At the same

time, the semiconductor technology

advances enable to increase the amount of

mailto:anveshanaindia@gmail.com
http://www.anveshanaindia.com/

AIJREAS VOLUME 2, ISSUE 12 (2017, DEC) (ISSN-2455-6300)ONLINE

Anveshana’s International Journal of Research in Engineering and Applied Sciences

Anveshana’s International Journal of Research in Engineering and Applied Sciences
EMAILID:anveshanaindia@gmail.com,WEBSITE:www.anveshanaindia.com

117

hardware resources on a chip for the

execution. Massively parallel embedded

systems specifically deal with the

optimized usage of such hardware

resources to efficiently execute their

functionalities. The design of these

systems mainly relies on the following

challenging issues: first, how to deal with

the parallelism in order to increase the

performance; second, how to abstract their

implementation details in order to manage

their complexity; third, how to refine these

abstract representations in order to produce

efficient implementations. This article

presents the GASPARD design framework

for massively parallel embedded systems

as a solution to the preceding issues.

GASPARD uses the repetitive Model of

Computation (MoC), which offers a

powerful expression of the regular

parallelism available in both system

functionality and architecture. Embedded

systems are designed at a high abstraction

level with the MARTE (Modeling and

Analysis of Real-time and Embedded

systems) standard profile, in which our

repetitive MoC is described by the so-

called Repetitive Structure Modeling

(RSM) package. Based on the Model-

Driven Engineering (MDE) paradigm,

MARTE models are refined towards lower

abstraction levels, which make possible the

design space exploration. By combining

all these capabilities, GASPARD allows

the designers to automatically generate

code for formal verification, simulation

and hardware synthesis from high-level

specifications of high-performance

embedded systems. Its effectiveness is

demonstrated with the design of an

embedded system for a multimedia

application.

Karen Zita Haigh, (2015), We describe

our application’s need for Machine

Learning on a General Purpose Processor

of an embedded device. Existing ML

toolkits tend to be slow and consume

memory, making them incompatible with

real-time systems, limited hardware

resources, or the rapid timing requirements

of most embedded systems. We present

our ML application, and the suite of

optimizations we performed to create a

system that can operate effectively on an

embeddded platform. We perform an

ablation study to analyze the impact of

each optimization, and demonstrate over

20x improvement in runtimes over the

original implementation, over a suite of 19

benchmark datasets. We present our results

on two embedded systems.

Salome Maro, (2017), Currently,

development efforts in embedded systems

development lead to a large number of

interconnected artifacts. Traceability

enables understanding and managing these

artifacts as they evolve. However,

establishing traceability is not a trivial

task, it requires the development

organization to plan how traceability will

fit into its processes and provide tools to

support traceability establishment. In

practice, guidelines for how traceability

should be established are lacking.

Therefore, companies struggle with

establishing traceability and making the

most of traceability once it is established.

3.0 Methodology:

3.1 Design Description:

Our approach is applied to design

architecture for various application

domains of embedded systems (e.g.

automotive, avionics, consumer

electronics, control, etc.). Embedded

systems applications are doing control.

Control activities could be measuring

physical variables (sensing), storing data,

processing sensors signals and data,

influencing physical variables (actuating),

monitoring, supervising, enabling manual

mailto:anveshanaindia@gmail.com
http://www.anveshanaindia.com/

AIJREAS VOLUME 2, ISSUE 12 (2017, DEC) (ISSN-2455-6300)ONLINE

Anveshana’s International Journal of Research in Engineering and Applied Sciences

Anveshana’s International Journal of Research in Engineering and Applied Sciences
EMAILID:anveshanaindia@gmail.com,WEBSITE:www.anveshanaindia.com

118

and automatic operation, etc. We consider

an embedded system domain a collection

of cooperating services that deliver

required functionality. These services may

be executed in a networked environment

and may be recomposed dynamically. We

propose an approach that extends to three

levels the architecture development

method for embedded systems application

domains. In Figure 2 the reference

architecture includes core services and it

focuses on commonality. Domain

architecture includes domain specific

services and it requires variability

management concerns. Finally, the last

level is dedicated to the set of products

architectures. On this level rules for

product derivation and configuration

should be included.

Figure 3. Cross domain architecture

design.

A feature model is a prerequisite of this

approach. We propose a feature model as

described in Figure 3. This model is

essential for both variability management

and product derivation, because it

describes the requirements in terms of

commonality and variability, as well as

defines the product line dependencies.

Feature types may be mandatory, optional,

optional or optional alternative.

Dependencies specified by the model are

called composition rules between domain

features. The requires rule expresses the

presence implication of two features and

the mutually exclusive rule captures the

mutual exclusion constraint on feature

combinations. Reference architecture

defines quality attributes, architectural

styles and patterns and abstract

architectural models (Figure 4). Quality

attributes clarify their meaning and

importance for core service components.

The interest of the quality attributes for the

reference architecture is how the quality

attribute interacts with and constrains the

achievement of other quality attributes

(i.e., trade-offs) and what the user’s view

of quality (i.e., quality in use) is.

Embedded systems services have to meet

many quality attributes, such as

modifiability and integrability.

Modifiability of a service can be divided

into the ability to support new features,

simplify the functionality of an existing

system, adapt to new operating

environments, or restructure system

services.

Figure 4. Reference architecture

realization.

The styles and patterns are the starting

point for architecture development.

Architectural styles and patterns are

utilized to achieve qualities. The style is

determined by a set of component types,

the topological layout of the components, a

set of semantic constraints and a set of

connectors. A style defines a class of

architectures and is an abstraction for a set

mailto:anveshanaindia@gmail.com
http://www.anveshanaindia.com/

AIJREAS VOLUME 2, ISSUE 12 (2017, DEC) (ISSN-2455-6300)ONLINE

Anveshana’s International Journal of Research in Engineering and Applied Sciences

Anveshana’s International Journal of Research in Engineering and Applied Sciences
EMAILID:anveshanaindia@gmail.com,WEBSITE:www.anveshanaindia.com

119

of architectures that meet it. A small

taxonomy identifies five style categories:

independent components, data-flow

cantered, data-cantered, virtual machine,

and call-and return style. An architectural

pattern is a documented description of a

style or a set of styles that expresses a

fundamental structural organization

schema applied to high-level system

subdivision, distribution, interaction, and

adaptation. Design patterns, on the other

hand, are on a lower level. They refine

single components and their relationships

in a particular context, and idioms describe

how to implement particular aspects of

components using the given language.

In this way the reference architecture

creates the framework from which the

architecture for new embedded systems is

developed. It provides generic

architectural services and imposes an

architectural style for constraining specific

domain services in such a way that the

final product is understandable,

maintainable, extensible, and can be built

cost-effectively. Potential reusability is

highest on the reference architecture level.

Core services and the architectural style of

the reference architecture are completely

reused on the domain architecture level.

Reference architecture is build based on a

service taxonomy. We adopted the idea

from WISA of an existing knowledge on

software engineering that is integrated and

adapted to service engineering for

embedded systems. The standards related

to each embedded system domain,

applicable architectural styles and patterns

and existing concepts services and

components are the driving forces of

embedded systems development. A service

taxonomy defines the main categories

called domains. Typical features that have

been abstracted from requirements

characterize services. The purpose of the

service taxonomy is to guide the

developers on a certain domain and getting

assistance in identifying the required

supporting services and features of

services.

Figure 5: Reference architecture

realization.

Domain architecture describes readymade

building blocks that assist

application/products developers in using

specific domains services. When the

reference architecture has been defined,

the existing components and services are

considered as building blocks in the

architecture of set of products. The

domains services provides variable assets

repository. Variability appears in

functional and non functional requirements

(including quality attributes). A structured

domain architecture repository may be

provided. A schema for this repository has

to be defined in a form of relationships

between services. In this way we are

mapping domain specific services to core

abstract services. Specialization relation is

a solution to be used for variability

management. Modeling run-time quality

attributes variability requires tool support.

Approaches are under development and

refining. Monitoring mechanisms,

measuring techniques and decision models

for making tradeoffs should be better

defined and validated.

4.0 Analysis with example:

Description:

In this section we describe a simple

multiple domains example to illustrate our

mailto:anveshanaindia@gmail.com
http://www.anveshanaindia.com/

AIJREAS VOLUME 2, ISSUE 12 (2017, DEC) (ISSN-2455-6300)ONLINE

Anveshana’s International Journal of Research in Engineering and Applied Sciences

Anveshana’s International Journal of Research in Engineering and Applied Sciences
EMAILID:anveshanaindia@gmail.com,WEBSITE:www.anveshanaindia.com

120

vision for product line architecture

development. The cross-domain reference

architecture considers measurement

control, data acquisition control and data

management domains. Our example is

abstracted from our experiences with the

architecture design of a scientific onboard

silicon X-ray array (SIXA) spectrometer

control software. SIXA is a multi-element

X-ray photon counting spectrometer. It

consists of 19 discrete hexagonally-

arranged circular elements and specific

domain hardware architecture. The SIXA

measurement activity consists of

observations of time-resolved X-ray

spectra for a variety of astronomical

objects. Figure 5 introduces the context

view of SIXA considering it a

measurement controller. External elements

that interface with our measurement

controller are a command interface and

physical devices (detectors) representing

sensors and actuators. The system is

programmed and operates using a set of

commands sent from a command interface.

Figure 6. Context view.

The role of the spectrometer controller is

to control the following measurement

modes:

• Energy Spectrum (EGY), which consists

of three energyspectrum observing modes:

Energy-Spectrum Mode (ESM), Window

Counting Mode (WCM) and TimeInterval

Mode (TIM).

• SEC, which consists of three single event

characterization observing modes: SEC1,

SEC2 and SEC3.

Each measurement mode could be

controlled individually. A coordinated

control of the analog electronics is

required when both measurement modes

are on.

Figure 7. Mapping features into

packages.

The analysis of requirements for domain

engineering and scoping the product line

has a result in a features model. The

features model has been structured in

packages (see. Figure 6). The with-reuse

aspect of reusability is described by the

abstract features of the PLA. The abstract

features encapsulated into three main

abstract domains Measurement Controller,

Data Management and Data Acquisition,

are completely reused in all product

members. The Abstract Spectrometer

Features package has the highest degree of

reusability but also the highest degree of

dependability. The abstract features

depend on the commonality between EGY

and SEC features. A change in the problem

domain of one of the three products is

mostly reflected in the degree of

reusability of the abstract domain features.

The sets of products that could be derived

from the domain specific services during

application engineering are:

mailto:anveshanaindia@gmail.com
http://www.anveshanaindia.com/

AIJREAS VOLUME 2, ISSUE 12 (2017, DEC) (ISSN-2455-6300)ONLINE

Anveshana’s International Journal of Research in Engineering and Applied Sciences

Anveshana’s International Journal of Research in Engineering and Applied Sciences
EMAILID:anveshanaindia@gmail.com,WEBSITE:www.anveshanaindia.com

121

• P1 – EGY Controller includes specific

services of a standalone control of EGY

measurement mode;

• P2 – SEC Controller includes specific

services of a standalone control of SEC

measurement mode;

• P3 – SEC with EGY Controller includes

specific services of coordinated control.

Cross-domain architecture of spectrometer

controllers:

The spectrometer controller cross domain

architectural approach is described in

Figure 7.

Figure 8. Spectrometer controller cross

domain architectural approach.

Reference architecture. Looking top-down,

the Reference Architecture encapsulated in

the Measurement <<MultipleDomain>> is

composed of three core abstract

<<Domain>>s: Measurement Control,

Data Acquisition Control and Data

Management. In each core <<Domain>>

abstract features are collected. The

Measurement Control is responsible for

services of starting and stopping the

operating mode for data acquisition

according to the commands received from

the command interface and according to

the events generated in other parts of the

software.

Domain architecture: Domain

architecture consists of domain specific

services and variability management

services. Each of the three core services is

specialized in domain specific services.

For example, Measurement Control is

specialized in Stand Alone Control (SAC)

and Coordinated Control (CC), Data

Acquisition Control (DAC) is specialized

in EGY_ Data Acquisition Control

(EGY_DAC) and SEC_ Data Acquisition

Control (SEC_DAC), Data Management

(DM) is specialized in EGY_ Data

Management (EGY_DM) and SEC_ Data

Management (SEC_DM). Domain

architecture includes services associated to

variability management.

Product architecture: Product

architecture for the sets of products

includes rules for product derivation and

configuration.

Table 1: Domain specific services and

derived products.

Product P1 P2 P3

Domains Specific

Service

x x

Measurement

Control

SAC

CC

Data

Acquisition

Control

EGY_DAC x x

SEC_DAC x x

Data EGY_DM x x

Management SEC_DM x x

In Table 1 the set of products are

horizontally distributed and the domain

services are dispersed vertically. Each cell

tij of the table is marked if product Pj uses

component Ci . For example, two

products, P1 and P2, includes a SAC

service of the measurement control

domain. The architecture have been

documented around multiple views

describing conceptual and concrete levels,

for each view a static and dynamic

perspective being offered. Architecture

documentation addresses specific concerns

mailto:anveshanaindia@gmail.com
http://www.anveshanaindia.com/

AIJREAS VOLUME 2, ISSUE 12 (2017, DEC) (ISSN-2455-6300)ONLINE

Anveshana’s International Journal of Research in Engineering and Applied Sciences

Anveshana’s International Journal of Research in Engineering and Applied Sciences
EMAILID:anveshanaindia@gmail.com,WEBSITE:www.anveshanaindia.com

122

for measurement control, data acquisition

control and data management. The views

were illustrated with diagrams expressed

in UML-RT, a real-time extension of

UML. The conceptual level considered a

functional decomposition of the

architecture into domains. The

relationships between architectural

elements are based on pass control and

pass data or uses. The concrete level has

considered a more detailed functional

description, where the main architectural

elements are packages, capsules, ports,

protocols.

Conclusions:

We have proposed an approach to design a

cross domain reference architecture for

embedded systems. The approach has been

exemplified by a simple example. The

problem dimension for the development of

an embedded system reference architecture

increases due to the larger number of

requirements and constraints specified by a

group of experts. Building the features

model may require a tool in order to

manage the analysis and structuring the

abstract features in domains. The reference

architecture contains core services of the

domains included in abstract features

package. The appropriate architectural

style is provided by a knowledge base

through a service taxonomy. A domain

architecture repository is a solution for

variability management of specific

services. The decision support tool is

proposed for product derivation. The role

of this tool is to bound variability’s in

order to get a right configuration for

product architecture. In our example, we

used a tabular form for the decision model.

When the problem complexity increases, a

more elaborated tool is required and is a

subject for our future research. However,

our incremental design and analysis

approach is based on a systematic service

oriented approach, which is more practical,

easier to follow and benefits of advantages

provided by service engineering.

References:

1. Abdoulaye Gamatie, (2011), “A Model-Driven

Design Framework for Massively Parallel

Embedded Systems”, Vol No: 10, Issue No: 4.

2. Bakshi, A., Prasanna, V. K., Ledeczi, A. (2001),

“Milan: A model based integrated simulation

framework for design of embedded systems”, Vol

No: 36, Issue No: 8, PP: 82–93.

3. Bastoul, C. (2004), “Code generation in the

polyhedral model is easier than you think”, In

Proceedings of the 13th IEEE International

Conference on Parallel Architecture and

Compilation Techniques (PACT’04), PP: 7–16.

4. Calvez, J.-P. (1993), “Embedded Real-Time

Systems. A Specification and Design

Methodology”.

5. Domer, R., Gerstlauer, A., (2008), “System-on-

Chip environment: A SpecC-based framework for

heterogeneous MPSoC design”, EURASIP J.

Embed. Syst, PP: 1–13.

6. HA, S. (2007), “Model-Based programming

environment of embedded software for MPSoC”, In

Proceedings of the Asia and South Pacific Design

Automation Conference (ASP-DAC’07). IEEE

Computer Society, Los Alamitos, CA, PP: 330–335.

7. Karen Zita Haigh, (2015), “Machine Learning

for Embedded Systems: A Case Study”.

8. Salome Maro, (2017), “Addressing Traceability

Challenges in the Development of Embedded

Systems”, ISSN 1652-876X.

mailto:anveshanaindia@gmail.com
http://www.anveshanaindia.com/

