
 AIJREAS VOLUME 2, ISSUE 9 (2017, September) (ISSN-2455-6300) ONLINE
 ANVESHANA’S INTERNATIONAL JOURNAL OF RESEARCH IN ENGINEERING AND APPLIED SCIENCES

ANVESHANA’S INTERNATIONAL JOURNAL OF RESEARCH IN ENGINEERING AND APPLIED SCIENCES

emailid:anveshanaindia@gmail.com,website:www.anveshanaindia.com

42

ANALYSIS OF THE LARGE DATA ALLOCATION IN BIGDATA

DAGGUPATI SAIDAMMA

Assistant Professor in CSE Department,

Geetanjali College of Engineering and Technology’

Email Id: daggupatisaida@gmail.com

ABSTRACT: Expansive scale information preparing structure like Apache Spark is winding up more well known to process a

lot of information either in a nearby or a cloud sent group. At the point when an application is sent in a Spark group, every one of

the assets are dispensed to it unless clients physically set a farthest point on the accessible assets. Also, it is unrealistic to force

any client particular limitations and limit the cost of running applications. In this paper, we introduce dSpark, a lightweight,

pluggable asset distribution system for Apache Spark. In dSpark, we have displayed the application fulfillment time concerning

the quantity of agents and application input/emphasis. This model is additionally utilized as a part of our proposed asset

distribution display where a deadline based, cost-proficient asset portion plan can be chosen for any application. Rather than the

current systems that attention more on displaying the quantity of VMs to use for an application, we have demonstrated both the

application cost and fruition time concerning agents, henceforth giving a fine grained asset portion conspire. Moreover, clients

don't have to determine any application sorts in dSpark. We have assessed our proposed system through broad experimentation,

which indicates huge execution benefits. The application consummation time forecast show has a mean relative blunder (RE)

under 7% for various sorts of utilizations. Besides, we have demonstrated that our proposed asset portion display limits the cost of

running applications and chooses viable asset assignment plots under shifting client particular due dates.

Index Terms—Big Data, Cloud Computing, Apache Spark, Resource Allocation, Deadline, Cost Minimization.

I. INTRODUCTION

Presently a-days, immense measure of

information is produced from online networking,

cell phones, IoT and numerous other rising

applications. Along these lines, information

handling and examination have turned out to be

truly essential in all the significant areas, for

example, research, business and industry. Apache

Spark [1] is a standout amongst the most

conspicuous enormous information handling

stages. It is an open source, broadly useful,

expansive scale information preparing system. It

for the most part concentrates on fast group

figuring and gives extensible and intelligent

examination through abnormal state APIs. Start

can perform clump or stream information

investigation, machine learning and diagram

handling. It can likewise get to assorted

information sources like HDFS [2], HBase [3],

Cassandra [4] and so forth and utilize Resilient

Distributed Dataset (RDD) [5] for information

deliberation. Start runs programs speedier than

Hadoop MapReduce [6] by performing the

majority of the calculations in memory. Also, it

stores halfway outcomes in memory for quicker

re-preparing of information. Start can run locally

in a solitary desktop, in a nearby bunch and on the

cloud. It keeps running over Hadoop Yarn [7],

Apache Mesos [8] and the default independent

bunch supervisor. In a Spark group, there are at

least one laborer hubs with the accessible assets

(CPU centers, memory and circle). Also, there is

an ace hub which is in charge of dispensing these

assets to the applications. Every application

utilizes the assigned assets to make agent forms

where it can run errands in parallel. Asset

designation in a Spark group should be possible

through the accompanying three instruments: (1)

Default Resource Allocation. It is utilized when

the applications are submitted in a Spark group

without determining any asset assignment subtle

elements. In this approach, every one of the

applications will keep running in a FIFO style and

every application expends all the laborer hubs.

Consequently, applications pursue each other and

when an application is running, it will go through

all the laborer hubs to make agents. (2) Static

Resource Allocation. At the point when an

application is presented, the client determines

what number of agents, centers, memory and so

mailto:daggupatisaida@gmail.com

 AIJREAS VOLUME 2, ISSUE 9 (2017, September) (ISSN-2455-6300) ONLINE
 ANVESHANA’S INTERNATIONAL JOURNAL OF RESEARCH IN ENGINEERING AND APPLIED SCIENCES

ANVESHANA’S INTERNATIONAL JOURNAL OF RESEARCH IN ENGINEERING AND APPLIED SCIENCES

emailid:anveshanaindia@gmail.com,website:www.anveshanaindia.com

43

on an application can have. Accordingly, assets

can be shared among various applications from at

least one clients. (3) Dynamic Resource

Allocation. On the off chance that this mode is

turned on, applications may discharge sit without

moving agents to give back a few assets to the

bunch which can likewise be reclaimed in future if

necessary. Be that as it may, there are three

noteworthy issues in these asset assignment

instruments. To start with, when a solitary

application is running in the group with the

default asset assignment component, it will devour

every one of the assets. As an outcome, asset

sharing among applications will be forestalled.

Second, in static asset distribution, the client

needs to physically set the measure of assets every

application will utilize. Indeed, even with

dynamic asset portion, the client still needs to set

the underlying measure of assets. Accordingly,

disgraceful assignment of assets may prompt

extreme execution issues. In conclusion, if a

generation group has client particular due dates,

default asset portion component may not work

since any application with a strict due date may

need to hold up in the FIFO line. Moreover,

wrong asset allotment in both static and dynamic

asset portion strategies may influence the due

dates.

In this paper, we propose an asset allotment

structure for circulated group based applications

in Apache Spark. What's more, we propose an

application consummation time expectation

demonstrate which can be worked from the

application profiles. This model is additionally

utilized as a part of the asset distribution model to

choose a due date based, savvy asset portion plot.

The principle commitments of this work are as per

the following:

 We outline a programmed, light-weight,

pluggable dSPark asset distribution structure

for Apache Spark that works from the ace hub

alongside the hidden group supervisor. • We

propose an asset assignment demonstrate

where a costeffective, due date based

Resource Allocation Scheme (RAS) can be

found for an application.

 We propose a model that predicts the

fulfillment time of an application in light of the

quantity of agents and properties of the

application.

 We build up a Spark Profiler to profile any

application concerning differing input

workloads, cycles, asset allotment plans and so

on.

 We propose a straightforward calculation to

produce Resource Allocation Schemes (RAS)

which can be utilized to send applications in an

Apache Spark group.

 We actualize the system utilizing the proposed

models and calculations. What's more, we run

thorough investigations to demonstrate the

precision and execution advantages of our

proposed models.

Whatever is left of the paper is sorted out as takes

after. In segment II, we talk about the foundation

of Apache Spark. In area III, we portray the

current works identified with this paper. In area

IV, we detail the asset designation and application

fulfillment time forecast models. In area V, we

outline the design of the proposed dSpark system.

In segment VI, we clarify the techniques we have

used to actualize the proposed structure. In area

VII, we assess the execution of our proposed

models. Segment VIII closes the paper.

II. BACKGROUND

At the point when appeared differently in relation

to the circle based MapReduce assignments of a

common Hadoop structure, Apache Spark

empowers most of the estimations to be performed

in memory and gives better execution to a couple

of utilizations, for instance, iterative figurings.

The widely appealing comes to fruition are made

to the circle exactly when it can't be fitted into the

memory.

Fig. 1 exhibits a typical Apache Spark pack.

Applications are submitted through a gathering

boss to continue running in the pack. Begin

supports Apache Mesos or Hadoop Yarn as group

chiefs to allocate resources among applications.

Besides, its own specific default Standalone

bundle director is furthermore satisfactory to

manage an era gathering. All these gathering

overseers reinforce both static and dynamic

appropriation of advantages. In static resource

partition, each application is passed on with a

settled measure of benefits which can't be changed

in the midst of the life-cycle of that application. In

 AIJREAS VOLUME 2, ISSUE 9 (2017, September) (ISSN-2455-6300) ONLINE
 ANVESHANA’S INTERNATIONAL JOURNAL OF RESEARCH IN ENGINEERING AND APPLIED SCIENCES

ANVESHANA’S INTERNATIONAL JOURNAL OF RESEARCH IN ENGINEERING AND APPLIED SCIENCES

emailid:anveshanaindia@gmail.com,website:www.anveshanaindia.com

44

any case, in one of a kind resource parcel, sit

without moving resources can be released to the

group and

Fig. 1. An Apache Spark Cluster

some other application can use them. These

benefits can in like manner be recovered from the

group in future if essential. Authorities are the

physical/figure centers of an Apache Spark gather

where no less than one application techniques can

be influenced depending upon the advantage for

restrain. In cloud associations, no less than one

expert center points can be made inside each

dispersed Virtual Machines (VM). A Spark

gathering can have no less than one worker

centers however there is only a singular Master

center point that is accountable for managing the

authority center points. Each application in Spark

has a Spark Context dissent in its rule program

(similarly called the Driver Program) which

makes and keeps up Executor shapes on worker

centers. An application uses its own particular

course of action of operators to run errands in

parallel, in various strings and to keep data in

memory and limit. Besides, these operators live

for the whole traverse of that application. Each

one of the specialists of a comparative application

must be undefined in measure. From now on, they

will have same measure of benefits (CPU focuses,

memory, and circle). There are two preferences of

separating applications from each other.

Introductory, a driver program can uninhibitedly

design its own specific assignments in the picked

up specialists. Second, every worker can have

different operators from different applications

running in their own JVM frames. Begin uses

Resilient Distributed Datasets (RDD) to hold data

in an accuse tolerant way. Every

action/application is isolated into various game

plans of errands called stages which are between

dependants. Each one of these stages outline a

planned non-cyclic diagram (DAG) and each

stage is executed in an unfaltering movement.

III. PROBLEM FORMULATION

A. Cost-efficient Resource Allocation Model

An Apache Spark group containing master and

worker center points can be passed on cloud

Virtual Machines (VM). For straightforwardness

of our proposed appear, we expect that all the

VMs used as master center points are

homogeneous. Consequently, each of the VM will

have same measure of CPU focuses, memory and

limit plate. To send an application in the cluster, a

Resource Allocation Scheme (RAS) ought to be

portrayed. In each ra, the total number of

operators, CPU focuses in each specialist and

memory in each operator should be shown. We

will likely pick a financially savvy RAS which

ensures that an application will be done before the

customer decided due date. Accept, we have an

Apache Spark group with Nw signify number of

pro center points and one (1) expert center point.

Besides, every one of these centers are made

specifically VMs. As each one of the masters are

homogeneous, each worker has Cw CPU focuses

and Mw indicate memory. Additionally, the cost

of running each VM is Pvm ($) consistently. For a

particular application (A), the customer

demonstrates a due date (D) before which this

application needs to wrap up. In addition, the

customer in like manner portrays the focuses per

operator (Ce) regard. If all the memory of a pro

(Mw) is consistently related among each one of

the focuses (Cw), by then (Mw/Cw) measure of

memory will be connected with each middle. In

this way, memory in each specialist (Me) will be

Ce ∗ (Mw/Cw). In Apache Spark, for a particular

application, each one of the operators ought to be

undefined. Along these lines, our worry is directly

to find the amount of operators (E) to use with an

application that meets the customer due date (D)

and besides restrains the total cost. We show this

issue as a constrained non-coordinate progression

issue as takes after:

Minimize: Cost = Pe ∗ E ∗ T (1)

subject to:1 ≤ E ≤ Emax (2)

T ≤ D (3)

 AIJREAS VOLUME 2, ISSUE 9 (2017, September) (ISSN-2455-6300) ONLINE
 ANVESHANA’S INTERNATIONAL JOURNAL OF RESEARCH IN ENGINEERING AND APPLIED SCIENCES

ANVESHANA’S INTERNATIONAL JOURNAL OF RESEARCH IN ENGINEERING AND APPLIED SCIENCES

emailid:anveshanaindia@gmail.com,website:www.anveshanaindia.com

45

where:

Pe = Ce ∗ (Pvm/Cw) (4)

Me = Ce ∗ (Mw/Cw) (5)

Emax = Nw ∗ (Cw/Ce) (6)

T = f(E,I) (7)

E,Ce, Me ∈ Z (8)

Cost Minimization: Eqn. 1 demonstrates the

target work where Cost is the needy variable and

agents (E) and application culmination time (T)

are the choice factors. Moreover, Pe is a

consistent esteem which speaks to the cost of

running one (1) agent.

Agent Capacity Constraint: As appeared in Eqn.

2, we have a lower bound and an upper bound on

the quantity of agents of an application. The lower

bound ought to be one (1) as every application

needs no less than 1 agent to process information

and the upper bound (Emax) relies upon the

accessible group assets as appeared in Eqn. 6.

Application Deadline Constraint: As appeared in

Eqn. 3, application finishing time (T) of a chose

arrangement should meet the client determined

due date (D). For a situation where the model

finds different asset designs that fulfill the due

date imperative, it will just choose the one which

has the most reduced cost.

Agent Price Estimation: As we connect parallel

measure of memory with all the CPU centers in a

VM, the quantity of utilized CPU centers speaks

to the cost of a VM. In this manner, we can

discover the cost (every second) of a solitary CPU

center from the genuine VM cost by isolating the

cost for running each VM (Pvm ($)) with add up

to number of accessible centers in a VM (Cw).

Eqn. 4 demonstrates the value estimation capacity

of an agent procedure. Estimating strategy of this

model can be effectively changed over to an

alternate situation and enable clients to utilize

their own particular VM evaluating model.

Memory Capacity Constraint: The measure of

memory for an agent (Me) relies upon the quantity

of centers (Ce) in that agent. What's more, it is

likewise topped by the aggregate memory of a

laborer as appeared in Eqn. 5.

Application Completion Time Prediction: As

appeared in Eqn. 7, the proposed streamlining

model finds the estimation of finishing time (T) as

a component of agent (E) and the aggregate

application input (I). We propose an application

consummation time forecast model to be utilized

as this capacity. This model will be talked about

in detail in the accompanying subsection.

Whole number Constraints: The quantity of

agents (E), centers in every agent (Ce) and

memory in every agent (Me) must be whole

numbers as appeared in Eqn. 8.

B. Application Completion Time Prediction

Model

An Apache Spark application utilizes it's

designated agents to process various pieces/parts

of the entire contribution to parallel. The

apportioning or part of the info forces somewhat

overhead on the real running time. Furthermore,

after all the preparing is done, the outcome should

be serialized which additionally signifies the

aggregate execution time. In the event that the

quantity of info pieces is more than the quantity of

agents, these information lumps are handled like a

clump in every agent. Be that as it may, adding an

excessive number of agents to accomplish more

parallelism can cause overheads because of

serialization, de-serialization and serious

rearrange operations in the system. In this manner,

when an application is given an ever increasing

number of agents, execution lift can be

noteworthy toward the begin. Notwithstanding,

after some point, including more agents does not

give any execution advantage rather assets are

squandered. Accordingly, for a settled information

(I) of an application, we can expect that the

connection between agents (E) and finishing time

(T) can be displayed like a power work as:

T(E) = α ∗ E
β
 + γ (9)

where α, β and γ are the power model coefficients.

However, in reality, the application input is not a

fixed parameter. Therefore, we further assume

that the coefficients in Eqn. 9 are determined by

the application input (I) and can be modelled like

a power function as:

α(I) = uα ∗ Ivα + wα (10)

β(I) = uβ ∗ Ivβ + wβ (11)

γ(I) = uγ ∗ Ivγ + wγ (12)

where, {uα, vα, wα}, {uβ, vβ, wβ} and {uγ, vγ,

wγ} are the power model coefficients in Eqn. 10

Eqn. 11 and Eqn. 12, respectively. If we substitute

α, β and γ of Eqn. 9, we find:

T(E,I)=(uα ∗ Ivα + wα) ∗ E(uβ∗Ivβ +wβ) + uγ ∗

Ivγ + wγ (13)

 AIJREAS VOLUME 2, ISSUE 9 (2017, September) (ISSN-2455-6300) ONLINE
 ANVESHANA’S INTERNATIONAL JOURNAL OF RESEARCH IN ENGINEERING AND APPLIED SCIENCES

ANVESHANA’S INTERNATIONAL JOURNAL OF RESEARCH IN ENGINEERING AND APPLIED SCIENCES

emailid:anveshanaindia@gmail.com,website:www.anveshanaindia.com

46

Fig. 2. dSpark Architecture

Eqn. 13 sets up the relationship of use fulfillment

time (T) as for both agent (E) and application info

or cycle (I). Thus, it can be utilized as a part of the

asset allotment display (Eqn. 7) to decide the

culmination time of an application. What's more,

this model can foresee application fruition time

with any size of information/emphasis and any

number of conceivable agents. To decide the

coefficients in Eqn. 13 for a specific application,

we mention n objective facts of the application

with various sources of info {I1 to In}. For every

application input, we measure the T esteems as for

various E esteems and fit them to build up a

relationship as appeared in Eqn. 9. Along these

lines, we will get three (3) set of coefficients: {α1

to αn}, {β1 to βn}, {γ1 to γn} for n perceptions.

Presently, in the event that we fit {α1 to αn}

versus {I1 to In} esteems as Eqn. 10, we will

discover {uα, vα, wα} coefficient esteems. Also,

the estimations of coefficient sets {uβ, vβ, wβ}

and {uγ, vγ, wγ} can be found.

III. PERFORMANCE EVALUATION

A. Execution

We have used Java programming tongue to

develop the proposed structure. We have executed

the Spark-Profiler module to profile any begin

application with a given data measure and a RAS.

This module uses SparkLauncher Java API [21] to

submit applications to the gathering. After an

application finishes its execution, a sub-module

called LogParser is used to parse the logs in the

pro center point to recoup the satisfaction time of

that application. We have completed Resource

Allocator as an alternate module and it controls

the Spark-Profiler module. At first this module

scrutinizes the setup records to get the information

about the group resources. As discussed in

Algorithm 1, this module realizes both

Application Completion Time Prediction Model

and the Resource Allocation Model as two one of

a kind techniques. To build up the application

complete time conjecture illustrate, we have

associated twist fitting mechanical assemblies

from Apache Common Maths Library [22]. For

dealing with the obliged minimization issue in our

advantage circulation appear, we haved used

JOptimizer Library [23].

B. Exploratory Setup

1) Cluster Configuration: We have sent an

exploratory Apache Spark aggregate on Microsoft

Azure Virtual Machines (VM). For the pro center,

we have picked "standard D4" measure VM event

which has 8 focuses and 28 GB memory. We have

made two (2) authority centers with "standard

D5v2" evaluate VM case each having 16 focuses

and 56 GB memory. For limit, we have influenced

an Azure Storage To record to pass on a typical

amassing contraption mounted in all the VMs.

The replication elective chose for this amassing

was "Locally monotonous limit (LRS)". In LRS,

data is copied three times inside a single server

cultivate which is arranged in a singular region.

Each one of the volumes and VMs were made in

the "Australia South-East" region. We have

presented Ubuntu Server Version 16.04 LTS in

each one of the center points and presented

Apache Spark Version 2.0.1 over it. Likewise, we

have utilized the autonomous pack administrator

that stops as is normally done with Apache Spark.

We have kept 15 CPU focuses and 45 GB of

memory of a VM for each expert center point. For

OS specific daemons and other application

programs, we have left the straggling leftovers of

the CPU focuses and memory. In our

examinations, we have described the Ce

motivating force to be five (5) which is

recommended by the Spark engineers since using

considerable number of focuses in a singular

operator comes to fruition horrible I/O throughput

and having more specialists each with less focuses

achieves high reject gathering (GC) and arranging

overhead. In any case, this regard can be

orchestrated in dSpark by the customer if

required. The esteem (Pvm) of each "standard

 AIJREAS VOLUME 2, ISSUE 9 (2017, September) (ISSN-2455-6300) ONLINE
 ANVESHANA’S INTERNATIONAL JOURNAL OF RESEARCH IN ENGINEERING AND APPLIED SCIENCES

ANVESHANA’S INTERNATIONAL JOURNAL OF RESEARCH IN ENGINEERING AND APPLIED SCIENCES

emailid:anveshanaindia@gmail.com,website:www.anveshanaindia.com

47

D5v2" event was $0.0795 AUD at the period of

the examinations.

2) Benchmarking Applications: We have used

BigDataBench [24], a noteworthy data

benchmarking suite to survey the execution of our

proposed models. We have picked three

unmistakable sorts of usages. These are: (1)

WordCount: enroll genuine application, (2) Sort:

memory and figure raised application and (3)

PageRank: cycle based revamp concentrated

application.

3) Application Profiles: We have used the Spark-

Profiler module to accumulate application profiles

for all the benchmarking applications. For

WordCount application, we have accumulated

application profiles for 5 GB, 10 GB, 20 GB, 40

GB and 80 GB of data workloads. For Sort

application we have accumulated application

profiles for 3.5 GB, 7 GB, 14 GB, 28 GB and 56

GB of data workloads. Taking everything into

account, for PageRank application, we have

accumulated application profiles for 5, 10, 15, 20

and 25 emphasess for a comparable 4 GB input

graph. We have gathered the application summit

time gauge appear as discussed in portion III.B

and discovered each one of the coefficients of

Eqn. 13.

IV. CONCLUSIONS AND FUTURE WORK

Dispersed, generous scale treatment of enormous

data essentially influences both research and

industry. Apache Spark is winding up more

pervasive as a gathering figuring engine on

account of its quick data dealing with limit,

expansive relevance in various spaces and broad

assortment of irregular state APIs. To help

customer specific SLA necessities and to grow an

Apache Spark cluster utilize, our investigation

focuses on proposing a canny resource

appropriation show. The fact of the matter is to

allow the customer a strategy for customized and

beneficial plans of employments in an area or

cloud gathering. We have developed a profiler for

Spark which can be used to profile an application

in the veritable gathering in regards to

unmistakable resource assignment designs and

data workloads. In addition, we have developed a

light-weight resource distribution framework

called dSpark that can be associated with the pro

center point of an Apache Spark gathering.

Applications can be submitted to dSpark as

opposed to direct submitting to the pack. In

perspective of the application profiles got from the

profiler, dSpark uses the proposed resource

distribution model to pick a due date based

costeffective resource task intend to pass on an

application to the gathering. We have driven

examinations to evaluate the capability of our

proposed models. In like manner, we have shown

the precision of the application fulfillment time

desire show for three (3) particular applications.

The mean relative mix-up in the desire show was

under 7% for different sorts of usages. In addition,

we have surveyed the sufficiency of the advantage

dissemination appear the extent that cost and

resource utilize and differentiated the results and

the default resource task approach in Spark. We

have shown that our model picks sagacious

resource apportioning plans that reasonably

handles distinctive customer specific due dates.

Similarly, not at all like some present works,

dSpark does not require the customers to show

application sorts as it would be troublesome for an

end-customer to have proper appreciation of the

application to choose it's sort. As our application

completing time desire show is worked by using

data from the application profiles, the precision of

this model depends upon the energy of utilization

profiling. The accuracy of this model additions

with a higher number of utilization profiles. In this

way, there is a clean trade up between show

precision and the level of profiling. In any case,

application profiles can be delivered utilizing past

application races to reduce profiling overhead. We

have acknowledged that all the worker center

points of the gathering are homogeneous. To suit

heterogeneous worker center points in the group,

the strategies for finding the best possible number

of specialists ought to be changed and we mean to

do this in our prospective work. Moreover, we

expect to develop an application-level scheduler

for Apache Spark. Choosing convincing resource

partition designs of a noteworthy data application

is the underlying move towards SLA-

masterminded booking of various enormous data

applications. dSpark can be used to produce the

learning of advantage solicitations of an

application under evolving SLA. In this way, data

got from dSpark can be used with the application-

level scheduler.

 AIJREAS VOLUME 2, ISSUE 9 (2017, September) (ISSN-2455-6300) ONLINE
 ANVESHANA’S INTERNATIONAL JOURNAL OF RESEARCH IN ENGINEERING AND APPLIED SCIENCES

ANVESHANA’S INTERNATIONAL JOURNAL OF RESEARCH IN ENGINEERING AND APPLIED SCIENCES

emailid:anveshanaindia@gmail.com,website:www.anveshanaindia.com

48

REFERENCES

[1] M. Zaharia, R. S. Xin, P. Wendell, T. Das, M. Armbrust,

A. Dave, X. Meng, J. Rosen, S. Venkataraman, M. J.

Franklin, A. Ghodsi, J. Gonzalez, S. Shenker, and I. Stoica,

“Apache spark: A unified engine for big data processing,”

Communications of the ACM, 2016.

[2] K. Shvachko, H. Kuang, S. Radia, and R. Chansler,

“The hadoop distributed file system,” in Proceedings of the

26th IEEE Symposium on Mass Storage Systems and

Technologies (MSST), Washington, DC, USA, 2010.

[3] L. George, HBase: the definitive guide: random access

to your planetsize data. “ O’Reilly Media, Inc.”, 2011.

[4] A. Lakshman and P. Malik, “Cassandra: a decentralized

structured storage system,” ACM SIGOPS Operating

Systems Review, 2010.

 [5] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M.

McCauley, M. J. Franklin, S. Shenker, and I. Stoica,

“Resilient distributed datasets: A fault-tolerant abstraction

for in-memory cluster computing,” in Proceedings of the 9th

USENIX Conference on Networked Systems Design and

Implementation, San Jose, CA, 2012.

[6] J. Dean and S. Ghemawat, “Mapreduce: simplified data

processing on large clusters,” Communications of the ACM,

2008.

[7] V. K. Vavilapalli, A. C. Murthy, C. Douglas, S. Agarwal,

M. Konar, R. Evans, T. Graves, J. Lowe, H. Shah, S. Seth et

al., “Apache hadoop yarn: Yet another resource

negotiator,” in Proceedings of the 4th ACM Annual

Symposium on Cloud Computing, Santa Clara, California,

2013.

[8] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D.

Joseph, R. H. Katz, S. Shenker, and I. Stoica, “Mesos: A

platform for fine-grained resource sharing in the data

center.” in Proceedings of the 8th USENIX Conference on

Networked Systems Design and Implementation, Boston,

MA, USA, 2011.

[9] A. Verma, L. Cherkasova, and R. H. Campbell, “Aria:

automatic resource inference and allocation for mapreduce

environments,” in Proceedings of the 8th ACM

International Conference on Autonomic Computing,

Karlsruhe, Germany, 2011.

[10] Z. Zhang, L. Cherkasova, and B. T. Loo, “Performance

modeling of mapreduce jobs in heterogeneous cloud

environments,” in Proceedings of the 6th IEEE

International Conference on Cloud Computing (CLOUD),

Santa Clara, CA, USA, 2013.

[11] A. Verma, L. Cherkasova, and R. H. Campbell,

“Resource provisioning framework for mapreduce jobs with

performance goals,” in Proceedings of the 12th

International Middleware Conference, Lisbon, Portugal,

2011.

[12] A. Verma, L. Cherkasova, V. S. Kumar, and R. H.

Campbell, “Deadlinebased workload management for

mapreduce environments: Pieces of the performance

puzzle,” in IEEE Network Operations and Management

Symposium, 2012.

[13] A. Gupta, W. Xu, N. Ruiz-Juri, and K. Perrine, “A

workload aware model of computational resource selection

for big data applications,” in Proceedings of the IEEE

International Conference on Big Data, Washington, DC,

USA, 2016.

[14] R. Tous, A. Gounaris, C. Tripiana, J. Torres, S.

Girona, E. Ayguade,´ J. Labarta, Y. Becerra, D. Carrera,

and M. Valero, “Spark deployment and performance

evaluation on the marenostrum supercomputer,” in

Proceedings of the IEEE International Conference on Big

Data, Santa Clara, CA, USA, 2015.

[15] P. Petridis, A. Gounaris, and J. Torres, “Spark

parameter tuning via trial-and-error,” CoRR, 2016

