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Abstract: 

Hyperspectral remote sensing or imaging 

spectroscopy has provided precise monitoring of 

land. Improved tools, technology and methods have 

improved utilization of remotely sensed data. 

Traditional multispectral remote sensing data have 

many limitations in providing spectral data and 

hence it leads to the loss of crucial crop features. 

Hyperspectral remote sensing provides spectral data 

from 400 nm to 2700 nm range which provides 

accurate spectral information which helps precise 

mapping and quantification. Moreover, techniques 

based on hyperspectral remote sensing are less time 

consuming, non-destructive and easy to repeat unlike 

field survey-based techniques. In country like India, 

hyperspectral remote sensing has emerged with great 

possibilities of precision agriculture. With the use of 

hyperspectral remote sensing data estimation of 

biophysical and biochemical properties of crops like 

leaf area index, estimation of chlorophyll a and b, 

nitrogen, lignin, cellulose has become precise and 

quick. This paper includes and elaborates advantages 

of using hyperspectral remote sensing data.  

Key Words: Imaging Spectroscopy, leaf area index, 

multispectral data.  

 Introduction 

Recent technological advancements in 

hyperspectral remote sensing or imaging 

spectroscopy has opened new avenues in 

land monitoring applications. It is now 

possible to utilize remotely sensed data in a 

direct and informed manner using improved 

tools and techniques. Hyperspectral remote 

sensing is superior to conventional 

multispectral remote sensing in providing 

spectral information. Multispectral 

broadband remote sensing has major 

limitation as it uses average spectral 

information over the broad bandwidth which 

results in loss of critical information which 

is crucial in quantification and 

characterization of important crop 

parameters (Alchanatis and Cohen, 2011; 

Thenkabail, 2003). Hyperspectral remote 

sensing captures spectral information in 

many contiguous narrowly defined spectral 

bands. Moreover, compared to direct field 

survey based approach hyperspectral remote 

sensing techniques are less time consuming 

and non-destructive which provide spatial 

estimates for quantification and monitoring 

of the target. Hyperspectral remote sensing 

is being increasingly used in many 

applications of vegetation and agricultural 

croplands. It has potential applications in 

crop type discrimination to understand the 

cropping system of the region, measuring 

concentration of photosynthetic pigments, 

detecting abiotic and biotic plant stress, 

change detection in vegetation cover, 
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accurate quantification and observing subtle 

changes in biophysical and biochemical 

parameters such as leaf area index, nitrogen, 

cellulose and lignin, assessment of moisture 

content. Hyperspectral remote sensing 

provides improved and significant basis to 

characterize, classify, model and map 

agricultural crops (Alchanatis and Cohen, 

2011; Thenkabail, 2003). Occurrence of 

energy and gas exchange takes place at the 

main surface of crop canopies which is 

mainly represented by leaves. To understand 

the transport of photons within the crops it is 

essential to understand its optical properties. 

The reflectance and absorption attributes 

captured in narrow bands are linked to 

specific crop characteristics such as 

biochemical constituents, physical structure, 

water content and eco-physical status of 

crops (Thenkabail, Enclona, Ashton, Legg 

and Van Der Meer, 2004). Mainly, there are 

three eminent spectral ranges are defined as 

per the biophysical and biochemical 

constituents of the crops. In the visible 

domain (400-700 nm), the most important 

biological process absorption by leaf 

pigments takes place and therefore low 

reflectance and transmittance values are 

observed. Here, main light absorbing 

pigments chlorophyll-a, chlorophyll-b, 

carotenoids, xanthophylls and polyphenols 

play significant role in the process of 

absorption (Gitelson, 2011; Gitelson, Gritz, 

& Merzlyak, 2003). Chlorophyll-a 

demonstrates maximum absorption in 410-

430 nm and 600-690 nm spectral regions 

whereas chlorophyll-b exhibits maximum 

absorption in 450-470 nm range. Total 

chlorophyll-a and chlorophyll-b account for 

65% of the total pigment concentration. In 

the green domain, due to these strong 

absorption bands a reflectance peak is 

observed at around 550 nm. Carotenoids and 

xanthophylls mainly absorb light in blue 

region and are responsible of various colours 

of flowers and fruits. Polyphenols absorb 

light with decreased intensity from blue to 

red region and usually occur when leaf is 

dead. In near-infrared region (700-1300 

nm), low absorption and highest reflectance 

and transmittance is observed because leaf 

pigments and cellulose are mostly 

transparent in this region. The level of 

reflectance in this domain is mainly reliant 

on the number if intercell spaces, cell layers 

and cell size. Here, scattering takes place 

due to multiple refractions and reflections at 

the boundary between hydrated cell walls 

and air spaces. Leaf water content and foliar 

constituents have major influence on leaf 

optical properties in the shortwave infrared 

(SWIR) region. In this domain, 1450 nm, 

1940 nm and 2700 nm are responsible for 

major water absorption. Additionally, 

biochemical components like protein, 

cellulose, lignin and starch also have major 

impact on the overall reflectance of SWIR 

region. These organic molecules have weak 

absorption peak due to molecular absorption 

and are related to some chemical bonds like 

C-H, N-H and O-H in the fresh and healthy 

leaves (Ferrato and Forsythe, 2013; Rahul et 

al., 2017). Apart from the advantages of 

hyperspectral remote sensing data there are 

many challenges associated at various levels 

of data analysis. Hyperspectral data consist 

of numerous narrow contiguous spectral 

bands hence have large volume. Complex 

and voluminous data pose challenge in order 

to store, handle and analyze the data. High 
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data dimensionality is one more challenge 

associated with hyperspectral remote 

sensing data (Ferrato and Forsythe, 2013; 

Rahul et al., 2017). The most common issue 

data redundancy occurs due to inter-band 

correlation and therefore peculiar knowledge 

about the application specific optimal bands 

is necessary to carry out data analysis. This 

article describes various methods of 

hyperspectral data analysis and its potential 

applications in the field of agriculture.  

 Hyperspectral remote sensing applications 

in Agriculture 

Spectral Characterization and Crop Type 

Discrimination 

Discrimination of subtle differences in 

various crop types can be accurately 

captured by narrow contiguous bands of 

hyperspectral remote sensing data. Although 

containing crucial information for crop type 

discrimination it also contains redundant 

information at band level due to inter-

correlation of bands. Hence, Identification 

and removal of redundant bands is one of 

the key steps in the hyperspectral data 

analysis. Band/feature selection is very 

significant for the ease in data analysis and 

computation as well as to achieve higher 

accuracy. Optimal band selection is most 

commonly used technique to reduce the data 

redundancy and extraction of optimal bands. 

Many band discriminant methods like 

principle component analysis and spectral 

discriminant analysis are used for 

band/feature extraction. Crop type 

discrimination can be achieved by two 

approaches: 1. Unsupervised classification 

methods 2. Supervised Classification 

methods. Unsupervised classification is 

based on the pattern identification of the 

target in the image data. These methods do 

not require training data or prior knowledge 

of the true classes of the image. These 

methods are based on clustering, which uses 

an iterative optimization process to classify 

the pixel vectors to a number of groups 

based on a similarity measures. One of the 

distance measures can be used such as 

Euclidean distance and Mahalanobis 

distance to measure the similarities between 

the pixels. The clustering algorithm can 

divide pixels into a user specified number of 

classes using k-mean clustering or to a 

flexible number of classes within a specified 

range using ISODATA clustering method. 

the clustering algorithm will analyze the 

distance between the cluster means and a 

pixel vector which needs to be classified and 

will assign a pixel to the closest cluster. In 

the first iteration, all the pixels will be 

assigned to the nearest clusters and in 

further iterations cluster means will be 

recalculated (Thenkabail et al., 2000; 

Thenkabail, Smith & De-Pauw, 2002). This 

iterative process will be repeated until it 

meets to the one of the user specified 

criteria. The number of classes, number of 

iterations and percentage pixels migrating 

from one cluster to another are user 

specified criteria. Supervised classification 

techniques need training data or ground data 

hence the first requirement to carry out 

supervised classification is significant 

ground or training dataset. Ground data refer 

to pixels or endmembers within an image 

with known class labels. Collected ground 

data is divided into training set and test set. 

Training set is utilized to train the 
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classification algorithm to identify similar 

pixels and test set is independently used to 

validate the performance of the classifier. In 

the supervised classification techniques, 

training set of ground data is used for feature 

extraction. The training of classification 

algorithm involves parameter estimation 

used in the particular classification 

algorithm until one of the user specified 

criteria is fulfilled. Post classification 

processing involves classification accuracy 

estimation using the ground data under the 

independent validation set to ensure that 

classification result is of acceptable level 

(Thenkabail et al., 2000; Thenkabail, Smith 

& De-Pauw, 2002). The most used 

hyperspectral data classification methods are 

spectral angle mapper (SAM), Maximum 

likelihood classifier (MLC), artificial neural 

network (ANN)and support vector machine 

(SVM).  

 Hyperspectral Vegetation Indices  

Accurate estimation of crop biophysical and 

biochemical parameters is essential for 

many precision agricultural management 

practices. Narrow, contiguous hyperspectral 

bands capture specific information related to 

crop biophysical and biochemical 

parameters. These parameters are often 

measured by converting reflectance 

spectrum into a single value or vegetation 

index. Crop parameters measured by 

hyperspectral vegetation indices are divided 

into three main categories: 1. Crop structure; 

2. Biochemical parameters; 3. Crop 

physiology/stress estimation.  

 Crop Structure 

Crop structural properties include green leaf 

biomass, leaf area index (LAI), senesced 

biomass and fraction absorbed 

photosynthetically active radiation. Most 

indices developed for structural analysis 

were formulated for broadband data but 

applicable for narrowband hyperspectral 

data. Structure based vegetation indices 

mostly depend upon combination of near 

infrared (NIR) to red reflectance such as 

NIR to red ratio or simple ratio (SR). 

Normalized form of SR, normalized 

difference vegetation index (NDVI) reduces 

the impact of atmospheric scattering by 

using a normalized difference between red 

NIR and red bands. Both SR and NDVI are 

good predictor of biomass, LAI and 

fractional cover but NDVI saturates at 

higher LAI values and varies with viewing 

geometry (Jollineau & Howarth, 2008). To 

improve canopy structure and minimize the 

effect of atmosphere and substrate other 

indices based on NDVI like soil adjusted 

vegetation index (SAVI), the 

atmospherically resistant vegetation index 

(ARVI) and the enhanced vegetation index 

(EVI). NDVI is largely replaced by EVI due 

to improved resistance to the atmosphere 

and less evidence of saturation at higher 

values of LAI.  

Biochemical parameters 

Pigments concentration 

Pigments concentration is an important 

indicator of phenological stages of crop, 

biotic or abiotic stress in crops. Many 

indices are developed to measure pigment 

concentration or to quantify specific 

pigments in leaves and canopies. Visible 
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reflectance in crop spectra is mainly 

influenced by three pigments: 1. Chlorophyll 

a and b; 2. Carotenoids and anthocyanin. 

Indices developed to quantify chlorophyll 

concentration include chlorophyll absorption 

in reflectance index (CARI), modified CARI 

(MCARI) and chlorophyll red-edge index 

(CI red edge). CARI utilizes mathematical 

difference between 700 and 670 nm 

reflectance, adjusted by a difference 

between 700 and 550 nm to recompense for 

non-photosynthetic material. MCARI further 

adjusts the soil component by ratio of NIR 

to red reflectance. CI red edge is based on a 

three band model for quantifying pigments. 

Here, the concentration of an absorber is 

quantified as the mathematical difference in 

reciprocal reflectance within an absorption 

region and reciprocal reflectance at a second 

wavelength outside of the main absorption 

region. This quantity is multiplied by NIR 

reflectance to compensate for variation in 

brightness. It shows almost linear 

relationship to chlorophyll content over 

diversity of crop types. Anthocyanin plays 

crucial role in minimizing photoinhibition 

and increases response to environmental 

stress (Jollineau & Howarth, 2008). 

Anthocyanin reflectance index (ARI) is 

calculated as the difference between 

reciprocal green reflectance (540-560 nm) 

and reciprocal red edge reflectance (690-710 

nm) is the main index proposed for 

quantification of anthocyanin. Further, 

indices red/green ratio (RGRI) and the 

anthocyanin content index (ACI) calculated 

as the ratio of green to NIR reflectance are 

based on SR model. The process of light 

harvesting for photosynthesis and protect 

chlorophyll from photooxidation via the 

reversible conversion of the xanthophylls 

violaxanthin to zeaxanthin is aided by 

carotenoids. Photochemical reflectance 

index is most widely used carotenoids index 

which captures the shift from violaxanthin to 

zeaxanthin. Due to this transition subtle 

decrease occurs at 531 nm and can be 

quantified using a normalized difference 

index and 570 nm as the reference band.  

Moisture content 

Moisture content varies with number of 

leaves and water content of individual 

leaves. There many simple ratio and 

normalized indices proposed to estimate the 

expression of liquid water bands relative to 

reference non-absorbing wavelengths. SRs 

include the moisture stress index (MSI) 

which is calculated as ratio of SWIR band 

(1650 nm) to NIR band (830 nm). 

Normalized difference infrared index (NDII) 

is the normalized version of MSI. Here, 960 

and 1180 nm are found to have the best 

correlation with tissue water over large 

range of plant types.  

Crop residues 

Distinct absorption bands related to proteins, 

starch, lignin, cellulose are critical for 

accurate quantification of crop biochemistry 

like senesced plant material, crop residue, 

carbon sequestration in the absence of water 

content and pigment. Out of all the 

biochemicals lignin and cellulose exhibit 

distinct absorption features in SWIR region. 

Cellulose absorption index (CAI) and 

normalized difference lignin index (NDLI) 

are most widely used indices to estimate 

lingo-cellulose content in the crop. CAI is 
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calculated as the difference within a strong 

cellulose absorption band 2101 nm and 

average reflectance for two bands outside of 

this absorption feature, at 2031 and 2211 

nm. NDLI utilizes prominent lignin 

absorption band at 1754 nm.  

Crop physiology 

Crop physiology significantly impacts 

overall reflectance spectra. Photochemical 

reflectance index (PRI) is one of the most 

effective physiology oriented hyperspectral 

vegetation index. With increased biotic or 

abiotic stress in plants, light absorbing 

capacity decreases and therefore reflectance 

at 531 nm drops due to shift of violaxanthin 

to zeaxanthin which produces increasingly 

negative PRI (Thenkabail, Enclona, Ashton, 

Legg, et al., 2004). Light use efficiency of 

crop can be effectively measured by PRI. 

NDVI and SR responds less effectively to 

change in FPAR whereas PRI effectively 

depicts downregulation of photosynthesis.  

Pest and Disease Detection 

Pest invasion and disease detection can be 

effectively captured by narrow contiguous 

bands of hyperspectral remote sensing data. 

The changes in crop canopy reflectance can 

provide significant information about the 

effect of pests and diseases on the crop 

physiology and biochemistry. Spectral 

unmixing process can be successfully 

applied to distinguish healthy crop from pest 

affected crop. Changes in leaf colour occurs 

due to occurrence of pest/disease in crops. 

Hyperspectral data can be useful to detect 

the change in leaf colour and further 

pest/disease severity can be measured. 

Spectral classification such as spectral 

normalization and nearest neighborhood 

classification technique and indices based 

analysis approach can estimate fungal 

disease severity.  Spectral classification 

approach can be applied to discriminate 

healthy crop from diseased or pest affected 

crop to minimize the economic loss. 

Hyperspectral remote sensing data can be an 

important data source for pest and disease 

detection, estimating disease severity and 

investigating the impact of pest and disease 

over crops. 

Precision Farming 

Precision farming involves management of 

field site specifically based on the local field 

needs rather than managing entire field as a 

uniform unit. Precision agricultural practices 

lead to economic, productive and sustainable 

farming regime. By adapting precision 

farming, greater yield than traditional 

farming with the same or reduced input or 

the same yield with reduced input can be 

achieved. Precision agriculture has four 

important aspects; 1. Field variability 

sensing and critical information extraction; 

2. Decision making based on the 

information retrieved and data analysis; 3. 

Precision field control; 4. Operationalization 

of new methods and approached and result 

evaluation. Hyperspectral remote sensing 

from ground or airborne platform can be 

important tool to extract field information 

(Thenkabail, Enclona, Ashton, Legg, et al., 

2004). Agricultural remote sensing typically 

utilizes surface reflectance data which 

provides accurate and fast field specific 

data. Hyperspectral remote sensing data is 

captured in narrow contiguous bands hence 
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provides critical information about biomass, 

crop yield estimation, crop physiology, 

nutrient stress, water stress, biotic stress 

(pest and disease infestation), weed control 

and soil properties. Apart from having major 

applications of hyperspectral remote 

sensing, a common issue related to it is 

spectral mixing of various target 

components. The implementation of various 

unmixing techniques, dimensionality 

reduction techniques help to extract accurate 

and specific spectral reflectance information 

for better data analysis. Combination of 

various techniques can lead to sustainable 

agricultural management with precision 

farming approach.   

Conclusion 

Hyperspectral remote sensing was initially 

used for detecting and mapping minerals. In 

recent    times, hyperspectral remote sensing 

techniques are used by many researchers in 

studies related to vegetation and agriculture 

allied domains. Hyperspectral remote 

sensing gathers data in narrow contiguous 

bands. It is an emerging technology with 

many applications and provides sustainable 

solutions to map, model, characterize and 

quantify vegetation and agricultural crops. 

Finally, strength of hyperspectral remote 

sensing has proved in biochemical and 

biophysical characterization of agricultural 

crops. In future, integration of hyperspectral 

data with thermal and LIDAR are envisaged 

the future of remote sensing. 
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