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Abstract 

As computer science advances, an increasing 

number of hardware implementations may be 

mimicked by software programming, bringing 

small, inexpensive, and quick components to image 

apparatus. Recent years have seen the introduction 

of computer techniques for spectral detection and 

the emergence of computational spectrum 

acquisition systems. In contrast to conventional 

non-computational approaches, this research 

emphasizes the benefits of computational spectrum 

acquisition implementations. Then, with an 

emphasis on the compact characteristic, we 

examine the implementations that are the most 

representative before concluding with a discussion 

and a prognosis. 

Key words: Spectral imaging; Computational 

imaging; Spectrometer  

Introduction 

The history of spectral detection is 

extensive. Isaac Newton created the first 

spectral detection in 1665 (Newton, 1979), 

dividing sunlight into a rainbow-colored 

pattern using a triangular prism. However, 

it wasn't until Kirchhoff and Bunsen 

(1861) constructed the first useful 

spectrometer that it was able to analyze the 

spectrum quantitatively. The direct reading 

spectrometer was created in the 1960s 

when semiconductor and photoelectronic 

technology advanced, making it easier to 

store and analyse spectral data. Since the 

1980s, when two-dimensional (2D) charge 

coupled device (CCD) arrays first 

appeared, advances in optical design, 

electronics, and manufacturing have all 

helped to significantly improve 

performance, ushering in a prosperous new 

era for spectrum acquisition instruments. 

Since then, spectral imaging technology 

has been frequently used (Hagen and 

Kudenov, 2013). However, there are still a 

number of drawbacks with traditional 

spectrometer and spectrum imaging 

equipment, including their high cost, large 

volume, and heavy weight. 

With the advancement of computer science 

in recent years, an increasing number of 

hardware implementations may now be 

replicated via software programming, 

bringing small, inexpensive, and quick 

components to image instruments. The 

initial drawbacks of spectral detection and 

computational reconstruction procedures 

are anticipated to be overcome as a result 

of the introduction of several 

computational methodologies. A 

inexpensive, lightweight, and compact 

spectrum collection device may also be 

widely used, lowering the bar for 

consumers to detect spectrum. Even on 

smartphone platforms, portable sensing 

devices are already feasible (Das et al., 

2016). 

In recent years, several types of 

computational spectral detection 

techniques have been created. There are 

some hazy broad guidelines for 

determining if an approach is 

computational. First, in order to get 

modified spectrum data, computational 
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spectral detection methods often employ 

spectral modulating or under sampling 

components. In order to extract spectral 

information from raw data, complex 

algorithms are used. However, some non-

computational approaches use some 

degree of computing, such as data 

mapping, super-resolution techniques, and 

de-noising algorithms. It is crucial to 

define computational techniques precisely 

before trying to compare computational 

approaches for spectral detection. 

Only approaches whose raw data may be 

comprehended by applying a 

computational transform to it are the focus 

of this study. In all honesty, the software's 

output data does not resemble the raw data 

that the hardware of the system gathered. 

This separates computational 

implementations from conventional 

spectrum information acquisition systems 

by making computation the system's core 

functionality.  

We discuss many computational 

spectrometers and computational spectrum 

imaging systems in this article. Although 

the physics behind conventional 

spectrometers and spectrum imaging 

systems vary, the concepts are similar in 

computing implementations, which is why 

they are seldom compared side by side. As 

a result, we consider both systems to be 

systems for computing spectral 

information acquisition. 

Grating-based coded aperture 

spectrometer 

According to Wolffen- buttel (2004), a 

classic grating-based spectrometer is made 

up of five components: a slit entry, 

collimating optics, a dispersive element 

(often a grating), focusing optics, and a 

detector array. The hardware device 

samples a slit portion of a test light source 

and creates a spanned spectrum 

distribution on a detector array plane based 

on the dispersive characteristic of the 

grating element. Thus, the intensity 

distribution of scattered light is measured 

in order to determine the shape of the 

spectrum. Slit-based dispersion 

spectrometers have a significant trade-off 

in spectral resolution and light throughput, 

however. A longer slit and detector are 

needed to increase light throughput in a slit 

spectrometer while preserving the 

spectrum resolution, which increases the 

system's size and cost (Cull et al., 2007).  

A static multi-modal and multiplex 

spectrometer (static MMS) is a 2D coded 

aperture technique that Gehm et al. (2006) 

introduced and improved for the spectral 

characterization of diffuse sources. 

Mathematically, Gehm et al. (2006) 

demonstrated that the orthogonality 

criterion must be satisfied via 2D coding. 

The input aperture pattern might be based 

on any family of orthogonal func- tions to 

satisfy the design requirement. Notably, 

since Parseval's relation does not hold, the 

noise level naturally rises when the 

continuous mask codes (harmonic and Le- 

gendre basis) are used. The discrete codes 

are favoured as a result. The device 

simultaneously boosted light throughput 

and signal-to-noise ratio (SNR) without 

losing spectral precision by swapping out 

the slit for an orthogonal column code 

based on a row-doubled Hadamard matrix. 

Fig. 3 displays the intensity picture that 

has been distortion-corrected and was 

obtained using the coded aperture 

approach. The output of static MMS is 

increased by roughly 10 times compared to 

a slit spectrometer, and the SNR is 

increased by around 3.4 times. 

By switching the monochromatic CCD 

detector array for a color one and the 

dispersive element for a holographic 

mailto:anveshanaindia@gmail.com
http://www.anveshanaindia.com/


AIJREAS                 VOLUME 7,  ISSUE 7 (2022, JUL)                      (ISSN-2455-6300)ONLINE 

Anveshana’s International Journal of Research in Engineering and Applied Sciences 
 

 

Anveshana’s International Journal of Research in Engineering and Applied Sciences 

EMAILID:anveshanaindia@gmail.com,WEBSITE:www.anveshanaindia.com 

46 

grating, Gehm et al. (2007) increased the 

static MMS (Cull et al., 2007). With three 

distinct spectral bands and a center 

wavelength that corresponds to blue, 

green, and red light, the holographic 

grating was created. As opposed to 

previous multiplexing spectrometer 

designs, which separate spectral bands 

along the non-dispersing axis, this one's 

grating periods are designed to disperse 

each band's entire spectral range over the 

detector. Consequently, the method was 

known as dispersion multiplexing. 

 

 With permission from OSA spectrometer 

(DMS), Gehm et al. (2006), Copyright 

2006, have been reprinted. Three spectral 

bands end up incident on the same detector 

pixels as a consequence of them. In order 

to detect the spectrum, color CCD was 

used. The overlapping bands may be 

distinguished by recreating data from each 

color channel independently. A non-

negative least-squares approach was used 

to calibrate the data shifting caused by the 

spectral response difference between 

holographic grating and CCD Bayer filters 

(Cull et al., 2007). A comparison between 

the final detected spectrum and the 

spectrum produced by an Ocean Optics 

USB 2000 spectrometer was made (Fig. 

4). It is important to note that the peak 

positions are discernible. The coded 

aperture was converted into a 37-ordered 

modified uniformly redundant array 

(MURA) shortly after DMS by Feller et al. 

(2007) (the same team as Gehm), who 

called the system "multi-order coded 

aperture" (MOCA). A neon pen lamp's 

spectrum detection result was compared to 

that of an Ocean Optics USB 2000 

spectrometer (Fig. 5). 

 

The coded aperture spectrometer can 

measure a larger total spectral range with a 

tiny detector thanks to multiplexing and 

computational reconstruction techniques, 

which facilitates shrinking. In reality, the 

DMS has a form that is about the size of a 

key and measures about a centimeter (Fig. 

6). 

Filter-based computational 

spectrometer 

With a few minor exceptions, the 

fundamental design of a filter-based 

spectrometer is substantially the same as a 

grating-based spectrometer. Three 

components—light collecting lenses, 

filters, and detector(s)—make up the 

majority of the hardware.  

The optical properties of incoming light, 

such as incidence angle, flux, and stray 

light level, are more appropriate for 

filtering and detection. Reprinted from 

Cull et al. (2007), Copyright 2007, with 

permission from OSA. Different 

wavelength components are separated 

sequentially or spatially as the light passes 

through the filters. Finally, the detector or 

detector array measures each component, 

allowing the system to gather the spectral 

data of the test sample. 

The filter is the key distinction between 

conventional and computational 

spectrometers. In the past, bandpass filters 

have been used to do wavelength 

decomposition tasks. The employment of 

additional filters with smaller passbands 

results in increased spectral resolution. 

The system as a whole becomes more 

complicated and volumetric as a result of 

this method. In the meanwhile, light 

throughput decreases as the spectral 

response curve becomes narrow, leading to 

a reduced SNR. Broadband filters are used 

in computational applications, rendering 

the raw data completely different from the 

original spectrum. However, spectral 
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resolution may be addressed by using 

computational reconstruction procedures. 

Broadband filters enable the detection of 

the spectrum from a darkened scene 

because they let much more light to pass 

through. Further, using sensing filters that 

are properly designed, the compressive 

sensing theory predicts that it is possible to 

recover a sparse spectrum with a high 

probability while using fewer filters than 

the desired spectrum channels (recovering 

a higher-dimensional vector from a lower-

dimensional vector), which is 

unquestionably a good approach for 

miniaturization. However, by employing 

regularization techniques to de-noise a 

higher-dimensional vector from a lower-

dimensional vector, noise may be 

minimized using a bigger filter number, 

which improves the SNR and strengthens 

the whole system. 

Low-cost thin-film spectrometer 

Chang and Lee (2008) demonstrated how a 

fine spectrometer on a chip based on a 

subpar and inexpensive filter array is 

feasible. The fundamental system model of 

the spectrometer based on a static filter 

array is shown in Fig. 7. An array of 

photoelectric sensors, such as CCD 

sensors, are put immediately on top of an 

array of filters. A CCD sensor or a 

collection of CCD sensors may represent a 

filter. A digital signal processor is then 

given the outputs from the CCD sensors 

(Chang and Lee, 2008). Its hardware 

system topology resembles that of a 

typical filter-based spectrum analyzer; the 

filter array's spectral distribution curve is 

its sole distinctive component. All filters 

are broadband, so-called low-cost filters, 

as illustrated in Fig. 8. The prototype 

system uses a non-negative constrained 

least-squares (NNLS) method to 

reconstruct the spectrum data, and the 

filter number is 40. We can only draw the 

conclusion that the prototype system can 

locate the center wavelength of a 

Gaussian-shaped spectrum at about 2 nm 

error level because Chang and Lee (2008) 

only displayed the reconstruction results of 

a narrow-band Gaussian-shaped spectrum. 

Further quantitative evaluation, however, 

is not possible. 

Chang et al.'s (2011b) software 

implementation was upgraded, and they 

produced a complex study of 

reconstruction accuracy. The 

reconstruction strategy for noise reduction 

employed a Gaussian kernel template, and 

the algorithm was enhanced into a l1-norm 

minimization technique. In both simulation 

and actual measurements, comparisons 

were done between NNLS, Tikhonov 

regularized non-negative least squares 

(TNNLS), and the l1-norm method. The 

measurement included a broadband sample 

(tungsten halogen light filtered via colored 

plastic). Achieving a mean absolute error 

of less than 1 nm for full width at half 

maximum (FWHM) and less than 0.5 nm 

for center wavelength, Chang et al. 

(2011a) increased the filter number to 119 

and used the system to accurately measure 

light emitting diode (LED) spectra. The 

experiment demonstrated the feasibility of 

employing a low-cost sensor device to 

match the functionality of an optical 

spectrometer of laboratory grade. It is 

important to note that since the system can 

only support a single LED of the same 

kind, the measurement accuracy level 

cannot accurately reflect the spectrum 

resolution. Application possibilities are 

constrained by the measurement result's 

strong dependence on previous stages of 

training and the choice of the Gaussian 

basis number. 

Oliver et al. (2012) (the same group as 

mailto:anveshanaindia@gmail.com
http://www.anveshanaindia.com/


AIJREAS                 VOLUME 7,  ISSUE 7 (2022, JUL)                      (ISSN-2455-6300)ONLINE 

Anveshana’s International Journal of Research in Engineering and Applied Sciences 
 

 

Anveshana’s International Journal of Research in Engineering and Applied Sciences 

EMAILID:anveshanaindia@gmail.com,WEBSITE:www.anveshanaindia.com 

48 

Chang) took use of a signal spectrum's 

sparseness to demonstrate how resolution 

may be increased over the limit imposed 

by the number of filters. Oliver et al. 

(2013) reconfigured the filters into a 

collection of random transmittances, 

mirroring some of the studies in 

compressive sensing (CS) (Candès et al., 

2006; Donoho, 2006; Baraniuk, 2007; 

Candès and Wakin, 2008) with respect to 

the usage of random matrices for signal 

capture and recovery. When the spectrum 

channel number N increased to 405, 40 

filters were used to keep the reconstruction 

mean square error (MSE) within 5 dB. 

Additionally, by redesigning the filter, the 

resolution can be shown from 6.5 to 0.99 

nm. 

The resolution, it should be noted, was 

generated from an MSE-based definition, 

which accurately reflects the genie-aided 

MSE level of sparse signal reconstruction 

(Oliver et al., 2013). In other words, rather 

than a random natural spectrum, this 

resolution result only matches certain 

spectrum measurements. The random thin-

film filter (TF) design, on the other hand, 

exhibits a 7-fold resolution gain over low-

cost TFs, which is advantageous for 

spectrometer shrinking. 

Etalon-based spectrometer 

Etalons possess the spectrum filtering 

property broadly speaking. The Fabry-

Perrot etalon-based spectrometer is 

regarded as a specific kind of filter-based 

spectrometer in this instance. The etalon 

may be categorized as a generalized 

broadband filter since it has a wavelength 

selectivity of various wavelengths. A 

computational spectrometer is a 

spectrometer that makes advantage of the 

etalons' large spectral range.  

In further detail, the optical spacing layer 

is a 700 nm SiO2 layer beneath a 1010 

PMMA step-structure with a thickness 

range of 0.8-2.8 m, for a total cavity 

thickness variation of 1.5-3.5 m in 100 

steps (Huang et al., 2017). The semi-

reflecting surfaces are 30-nm silver films 

(reflection is around 0.7). The CCD sensor 

was positioned atop the cavity array. The 

etalons' fineness and thickness range 

influence the resolution that may be 

achieved. According to the Nyquist 

sampling principle, the EARS system 

delivers an equal spectral resolution of 8 

nm at a sample period of 4 nm. However, 

by using the nature of compressive 

sensing, the resolution might surpass the 

resolution limit if the signal is known to be 

sparse on a specific basis. The wavelength 

center positioning precision, for instance, 

may be as high as 0.12 nm if the signal is 

recognized as coming from a laser source. 

2.2.3 New material filter spectrometer 

More degrees of freedom for manipulating 

physical variables are made available by 

advances in material science and 

nanotechnology, and spectrum modulation 

yields numerous novel results. The limits 

of conventional production are partially 

addressed by new material-based 

techniques, expanding the range of 

spectral detection. Here, we provide a 

quick overview of a number of exemplary 

novel material-based filter spectrometer 

implementations. 

Quantum dot spectrometer 

A broadband spectrometer based on 

quantum dot filters was presented by Bao 

and Bawendi in 2015. The 2D absorptive 

filter array, made up of 195 colloidal 

quantum dots (CQDs), takes the place of 

interferometric optics in the tiny 

spectrometer, which achieves a spectral 

resolution of 1 nm with a measuring range 

of 300 nm. The quantum dot spectrometer 

and broadband filter spectrometer share all 
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benefits as a result of their identical 

fundamental structures. By expanding the 

variety of CQDs employed in the filter 

array, it is possible to simultaneously 

improve the spectrum channel number and 

spectral range without reducing overall 

photon efficiency.  

PC slabs may be made using single 

exposure photolithography with just 

common CMOS components. The 

technique may be extended to any 

wavelength range by scaling the size of the 

PC since the spectral response functions 

are entirely extrinsic and enabled by 

structures rather than material features, 

providing this implementation a significant 

promise for the downsized spectrometer. 

Computational spectral imaging 

In contrast to spectrometers, spectral 

imaging collects a 3D data cube that 

includes both spectral () and spatial (x, y) 

data. Spectral data is better understandable 

with a spatial resolution. Consequently, it 

is simple to get the spatial distribution of 

spectral information. In certain 

applications, including geological survey 

and agricultural disease evaluation, spatial 

distribution data may be more significant 

than a high spectral resolution. The 

simultaneous collection of spatial and 

spectral data, which increases system 

complexity, makes it more difficult to 

gather 3D information since spatial and 

spectral data are typically collected using 

separate procedures. Traditional spectrum 

imaging techniques utilize either time 

division or space division to multiplex the 

spatial and spectral dimensions, which 

results in trade-offs between spectral and 

spatial resolutions (or frame rate). 

Computational techniques may be used to 

overcome the aforementioned issues. The 

emergence of compressive sensing theory 

allows for the extremely compressed 

storage of recorded data. Here, we divide 

computational spectral imaging techniques 

into two categories: compression of data 

during computation in the spectrum () 

dimension and calculation of data during 

computation in the spatial (x, y) 

dimension. This section focuses on 

spectrum imaging implementations that 

use computational techniques to create 

portable, all-around systems. 

Computation in spectral (λ) dimension 

Directly using a spectrometer to collect the 

spectrum of each pixel and then combining 

the data to create a spectral picture is the 

simplest technique to convert spectrometry 

into a spectral imaging device. The spatial 

resolution or frame rate of spectrum 

detection may be greatly enhanced by 

utilizing computational approaches to 

compress the spatial or temporal effort. In 

fact, any spectrometer-based imaging 

technique described in Section 2 may be 

seen as computational spectral imaging, 

which involves doing computations in the 

spectrum dimension. There are few efforts 

at spectral imaging, and computational 

spectrometers are often created from 

scratch.  

Computed tomography imaging 

spectrometry  

The computerized tomography imaging 

spectrometry (CTIS) is a common 

computational method. Bulygin and 

Vishnyakov (1992) and Oka-moto and 

Yamaguchi (1991) each separately 

developed this idea. Ford et al. (2001) 

created the first high-resolution CTIS after 

years of research and development. The 

spectral channel number was 55 and the 

spatial resolution was 203x203 pixels 

using a 2048x2048 CCD camera. By using 

a 2D dispersion element, CTIS systems 

(Fig. 20) vary the mixing of spatial and 

spectral data at various points on the 
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detector. The tomographic methods can 

recreate the spectral picture after the 

aliasing compresses the spectral and 

spatial data into a single shot. The system 

configuration is made more compact in 

this manner. 

2. HyperCam 

"HyperCam" is a product created by Goel 

et al. (2015) for widespread spectrum 

imaging. It features a straightforward 

system design, consisting of a 17-LED 

light source, a driver board, and a CMOS 

camera (Goel et al. (2015) provide a photo 

of the system). Each component is 

affordable and designed for everyday 

usage. The spatial resolution is 12801024, 

and the frame rate ranges from 9 to 150 

frames/s depending on the number of 

channels employed. 

To span the camera sensitivity range, 

narrowband LEDs were experimentally 

chosen. Goel et al. (2015) have the 

spectrum power distribution curves of 

LEDs accessible. The spectral resolution is 

not anticipated to be good since these 

spectral curves are considered to be poor 

circumstances in classical spectral 

detection. Goel et al. (2015) improved the 

system in an application-oriented manner 

as opposed to focusing on spectrum 

reconstruction accuracy. For two distinct 

applications—namely, user-specific 

feature acquisition in a multi-user 

interaction system and food monitoring—a 

great deal of software computational work 

has been done. 

The multi-channel picture was initially 

captured, and it was then calculated to 

create an immersed image that highlights 

the hand feature. The assessment shows 

that this method reliably distinguishes 

between five users at once, which is 

appropriate for the majority of multi-touch 

surface systems. The system accurately 

predicted relative ripeness in the second 

application, which is more widely used, 

with an accuracy of 94% (as opposed to an 

accuracy of 62% when utilizing RGB 

pictures) (Goel et al., 2015). 

The HyperCam architecture demonstrates 

the potential for widespread spectrum 

imaging. Although the spectral 

performance of such devices is not 

encouraging, we think that with the 

advancement of hardware design and 

machine learning algorithms, affordable 

spectrum imaging devices may become 

extensively employed in particular 

recognition applications. 

Computation in spatial (x, y) dimension 

A novel imaging method has been created 

to acquire an image with compressed 

sampling in response to the introduction of 

the single pixel imaging idea (Takhar et 

al., 2006; Duarte et al., 2008) derived from 

compressive sensing (Candès et al., 2006; 

Donoho, 2006; Baraniuk, 2007; Candès 

and Wakin, 2008). An l1-norm 

minimization approach may be used to 

rebuild the picture from a single pixel 

detector using a spatial light modulator 

(SLM) to provide variable spatial coding. 

Additionally, if the scene is somewhat 

"sparse," the captured data may be greatly 

reduced, which is advantageous for 

spectrum imaging. Under this 

configuration, a spectral picture may be 

captured using a spectrometer as a single 

pixel detector. Over the last ten years, 

attempts have been undertaken. 

Conclusions 

Over the last several decades, spectral 

information collecting technology has 

advanced quickly. Numerous novel 

implementations have surfaced as a result 

of the use of new materials and computer 

algorithms, opening up new possibilities 

for spectrometers and spectrum imaging. 
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The majority of computational 

spectroscopy equipment may still operate 

with lower precision than conventional 

equipment. However, this flaw becomes 

less significant when seen through the lens 

of ubiquitous applications, such 

smartphone-based detection or spectrum-

based identification. Instead, the 

advantages of these technologies are their 

affordable, lightweight, and small 

enclosures. These benefits are almost 

usually more alluring than aiming for 

perfection in such applications. Consumer-

friendly spectral detection has recently 

received some attention. We believe that 

widespread spectral information use will 

result from the co-design of hardware and 

computational algorithms, and that as the 

Internet of Things (IoT) and artificial 

intelligence (AI) develop, ubiquitous 

spectrometers and spectral imaging will 

benefit humankind. 
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