
AIJREAS VOLUME 8, ISSUE 3 (2023, MAR) (ISSN-2455-6300)ONLINE

Anveshana’s International Journal of Research in Engineering and Applied Sciences

Anveshana’s International Journal of Research in Engineering and Applied Sciences
EMAILID:anveshanaindia@gmail.com,WEBSITE:www.anveshanaindia.com

24

A STUDY ON CONSTRUCTING DATA PATHS IN NETWORK

PROCESSOR-BASED ROUTERS

Sreedhar Pasumarthi

Senior lecturer, I/c HOD

IN CCN

Sir CRR Polytechnic

College

sreedhar36@gmail.com

Kiranmayi Akkabattula

Lecturer in computer

engineering

Sir CRR Polytechnic

College

kiranmayi1301@gmail.co

m

Tejaswini kothapalli

Lecturer in computer

engineering

Sir CRR Polytechnic

College

tejakothapalli@gmail.co

m

Abstract

There is developing revenue in network processor

advances fit for handling parcels at line rates. In

the next generation of high-speed router and switch

architectures, network processors are likely to

replace the Application Specific Integrated Circuits

(ASICs) that are currently utilized in routers.

NetBind, a high-performance, adaptable, and

scalable binding tool for dynamically constructing

data paths in network processor-based routers, is

the subject of our design, implementation, and

evaluation in this paper. NetBind's methodology

strikes a balance between the need to process and

forward packets at line speeds and the

programmability of the network. One of the most

important features of next-generation Internet

architectures is the functionality of routers for

custom packet processing. As an abstraction for

describing, composing, and deploying end-to-end

connections with custom communication features,

network services have been proposed. We present a

novel hardware architecture for high-performance

processing of such network services in the data

path.

Keywords: Network processor, Binding, Service

Creation, Programmable Networks.

Introduction

Recently, there has been a growing interest

in network processor technologies that can

support software-based implementations of

the critical path while processing packets

at high speeds. We believe that introducing

programmability into routers based on

network processors is a significant area of

research that has not yet been fully

explored. The difficulty arises from the

fact that network processor-based routers

must simultaneously support modular and

extensible data paths and forward

minimum size packets at line rates.

Typically, the higher the line rate

supported by a network processor-based

router the smaller the set of instructions

that can be executed in the critical path.

This poses significant challenges when

introducing programmability into the

critical path. Data path modularity and

extensibility requires the dynamic binding

between independently developed packet

processing components.

We believe that traditional techniques for

realizing dynamic binding cannot be

applied to network processors because

these techniques introduce considerable

overhead in terms of additional

instructions in the critical path. In this

paper, we present a methodology and

binding tool for constructing

programmable data paths in network

processor-based routers without

introducing overhead in the critical path.

We have developed NetBind, a binding

tool that can create packet processing

pipelines through the dynamic binding of

small pieces of machine language code. In

NetBind, data path components export

“symbols”, which are used during the

binding process. A NetBind “binder”

modifies the machine language code of

components at runtime. As a result,

AIJREAS VOLUME 8, ISSUE 3 (2023, MAR) (ISSN-2455-6300)ONLINE

Anveshana’s International Journal of Research in Engineering and Applied Sciences

Anveshana’s International Journal of Research in Engineering and Applied Sciences
EMAILID:anveshanaindia@gmail.com,WEBSITE:www.anveshanaindia.com

25

components can be combined into a single

piece of code without any problems. While

the current implementation of the tool is

focused on the Intel IXP1200 network

processor, the design of NetBind is guided

by a set of general principles that make our

method applicable to a class of network

processors.

Future work will focus on porting the

NetBind tool to other network processors.

We have used NetBind to create data paths

for virtual routers sharing the resources of

the same IXP1200 network processor.

Specifically, we have created an IPv4 data

path and used this data path to evaluate

NetBind's performance. In the most recent

release of the IXP1200 Software

Development Kit (IXA SDK 2.0), Intel has

provided the MicroACE system for

modularizing packet processing functions.

In this paper, we evaluate NetBind and

MicroACE and identify potential pros and

cons of each scheme.

Network Processors

A common practice when designing and

building high performance routers is to

implement the fast path using Application

Specific Integrated Circuits (ASICs) in

order to avoid the performance cost of

software implementations. ASICs are

usually developed and tested using Field

Programmable Gate Arrays, which are

arrays of reconfigurable logic. Network

processors represent an alternative

approach to ASICs and FPGAs, where

multiple processing units, offer dedicated

computational support for parallel packet

processing. Processing units often have

their own on-chip instruction and data

stores. In some network processor

architectures, processing units are

multithreaded. Hardware threads usually

have a separate program counter and

manage a separate set of state variables.

However, each thread shares an arithmetic

logic unit and register space. Network

processors do not only employ parallelism

in the execution of the packet processing

code, rather, they also support common

networking functions realized in hardware,

Network processors typically consume less

power than FPGAs and are more

programmable than ASICs.

Figure 1: Internal Architecture of

IXP1200

The IXP1200 Network Processor

Our study on the construction of modular

data paths is focused on the Intel IXP1200

network processor. The IXP1200

incorporates seven RISC CPUs, a

proprietary bus (IX bus) controller, a PCI

controller, control units of accessing off-

chip SRAM and SDRAM memory chips,

and an on-chip scratch memory. The

internal architecture of the IXP1200 is

illustrated in Figure 1. In what follows, we

provide an overview of the IXP1200

architecture. The information presented

here is essential for understanding the

design and implementation of NetBind.

AIJREAS VOLUME 8, ISSUE 3 (2023, MAR) (ISSN-2455-6300)ONLINE

Anveshana’s International Journal of Research in Engineering and Applied Sciences

Anveshana’s International Journal of Research in Engineering and Applied Sciences
EMAILID:anveshanaindia@gmail.com,WEBSITE:www.anveshanaindia.com

26

Figure 2: Microengine Registers

Each microengine incorporates 256 32-bit

registers. Among these registers, 128

registers are General Purpose Registers

(GPRs) and 128 are memory transfer

registers. The register space of each

microengine is shown in Figure 2.

Registers are used in the following

manner. GPRs are divided into two banks

(i.e., banks A and B, shown in Figure 2) of

64 registers each. Each GPR can be

addressed in a “context relative” or

“absolute” addressing mode. By context

relative mode, we mean that the address of

a register is meaningful to a particular

context only. Each context can access one

fourth of the GPR space in the context

relative addressing mode. By absolute

mode, we mean that the address of a

register is meaningful to all contexts.

Dynamic Binding Issues

There are many different techniques for

introducing new services into software-

based routers. At one end of the spectrum,

the code that implements a new service

can be written in a high level, platform-

independent programming language (e.g.,

Java) and compiled at runtime producing

optimized code for some specific network

hardware. In contrast, data paths can be

composed from packet processing

components. Components can be

developed independently from each other,

creating associations at run time. Although

algorithmic components must be

developed and tested in advance, this

dynamic binding approach speeds up the

development and installation of new

services. The design of a dynamic binding

system for network processor-based

routers is the topic of our subsequent

discussion. The most significant problems

that arise when creating a binding system

for network processor-based routers can be

summed up as:

 Headroom limitations;

 Register space and state

management;

 Choice of the binding method;

 Data path isolation and admission

control;

 Processor handoffs;

 Instruction store limitations;

 Complexity of the binding

algorithm.

Headroom Limitations

Line rate forwarding of minimum size

packets (64 bytes) is an important design

requirement for routers. Routers that can

advance least size bundles at line rates are

commonly more strong against refusal of-

administration assaults, for instance. Line

rate sending doesn't mean zero lining.

Instead, it indicates that the routers' output

links can be fully utilized when forward

minimum size packets. A necessary

condition for achieving line rate

forwarding is that the amount of time

dedicated to the processing of a minimum

size packet does not exceed the packet's

transmission or reception times, assuming

a single queuing stage. If multiple queuing

stages exist in the data path, then the

processing time associated with each stage

AIJREAS VOLUME 8, ISSUE 3 (2023, MAR) (ISSN-2455-6300)ONLINE

Anveshana’s International Journal of Research in Engineering and Applied Sciences

Anveshana’s International Journal of Research in Engineering and Applied Sciences
EMAILID:anveshanaindia@gmail.com,WEBSITE:www.anveshanaindia.com

27

should not exceed the packet's

transmission or reception times. Given that

the line speeds at which network

processor-based routers operate are high,

(e.g., in the order of hundreds of Mbps or

Gbps), the amount of instructions that can

be executed in the critical path is typically

small, ranging between some tens to

hundreds of instructions. The amount of

instructions that can be executed in the

critical path without violating the line rate

forwarding requirement is often called

headroom.

Register Space and State Management

The exchange of information between data

path components typically incurs some

communication cost. The performance of a

modular data path depends on the manner

in which the components of the data path

exchange parameters between each other.

Data transfer through registers is faster and

more efficient than memory operations.

Therefore, a well-designed binding tool

should manage the register space of a

network processor system such that the

local and global state information is

exchanged between components as

efficiently as possible. The number of

parameters which are used by a component

determines the number of registers a

component needs to access. If this number

is smaller than the number of registers

allocated to a component, the entire

parameter set can be stored in registers for

fast access. The placement of some

component state in memory impacts the

data path's performance. Although modern

network processors support a large number

of registers, register sets are still small in

comparison to the amount of data that

needs to be managed by components.

Transfer through memory is necessary

when components are executed by a

separate set of hardware contexts and

processing units. A typical case is when

queuing components store packets into

memory, and a scheduler accesses the

queues to select the next packet for

transmission into the network.

Choice of the Binding Method

Apart from the manner in which

parameters are exchanged between

components, the choice of the binding

technique significantly impacts the

performance of a binding algorithm. There

are three methods that can be used for

combining components into modular data

paths. The first method is to insert a small

code stub that implements a dispatch

thread of control into the data path code.

The dispatch thread of control directs the

program flow from one component to

another based on some global binding state

and on the parameters returned by each

module. This method is costly. The

minimum amount of state that needs to be

checked before the execution of a new

component is an identifier to the next

module and a packet buffer handle

exchanged between components. Checking

this amount of state requires at least four

compute cycles. If a data path is split

between six components, then the total

amount of overhead introduced in the

critical path is twenty-four compute cycles

which is a significant part of the network

processor headroom in many different

network processors. For example, in IXP

network processors that target the OC-48

and OC-192 line rates, the headroom is

equal to 57 compute cycles. In this case

the binding overhead accounts for 42% of

the headroom. The dispatch loop approach

is more appropriate for static rather than

dynamic binding and can impact the

performance of the data path because of

the overhead associated with the insertion

of a dispatch code stub. An enhancement

AIJREAS VOLUME 8, ISSUE 3 (2023, MAR) (ISSN-2455-6300)ONLINE

Anveshana’s International Journal of Research in Engineering and Applied Sciences

Anveshana’s International Journal of Research in Engineering and Applied Sciences
EMAILID:anveshanaindia@gmail.com,WEBSITE:www.anveshanaindia.com

28

on the first method for dynamic binding

adds a small vector table into memory. The

vector table contains the instruction store

addresses where each component is

located.

Data Path Isolation and Admission

Control

To forward packets without disruption,

data paths sharing the resources of the

same network processor hardware need to

be isolated. In addition, an admission

control process needs to ensure that the

resource requirements of data paths are

met. Resource assignments can be

controlled by a system-wide entity.

Resources in network processors include

bandwidth, hardware contexts, processing

headroom, on-chip memory, register space,

and instruction store space. One way to

support isolation between data paths is to

assign each data path to a separate

processing unit, or a set of hardware

contexts, and to make sure that each data

path does not execute code that exceeds

the network processor headroom.

Determining the execution time of

programs given some specific input is

typically an intractable problem. However,

it has been shown that packet processing

components can have predictable

execution times One solution to the

problem is to allow code modules to carry

their developer’s estimation of the worst

case execution time in their file headers.

The time reported in each file’s header

should be trusted, and code modules

should be authenticated using well-known

cryptographic techniques. To determine the

worst case execution time for components,

developers can use reasonable upper

bounds for the time it takes to complete

packet processing operations.

Processor Handoffs

Sometimes the footprints of data paths can

be too large so that they cannot be placed

in the same instruction store. In this case,

the execution of the data path code has to

be split across two, or more processing

units. Another case arises when multiple

data paths are supported in the same

processor. In this case, the available

instruction store space of processing units

may be limited. As a result, the

components of a new data path may need

to be distributed across multiple

instruction stores. Third, the execution of a

data path may be split across multiple

processing units when “software

pipelining” [21] is employed for increasing

the packet rate that can be achieved in a

network processor architecture. Software

pipelining is a technique that divides the

functionality of a data path into several

stages. Pipeline stages can potentially run

in different processing units. Multiple

stages can be executed at the same time

forwarding the packets of different data

flows. We call the transfer of execution

from one processing unit to another (that

takes place when a packet is being

processed), “processor handoff”. Processor

handoffs impact the performance of data

paths and need to be taken into account by

the binding system. The performance of

processor handoffs depends on the type of

memory used for communication between

processing units. A dynamic binding

system should try to minimize the

probability of having high latency

processor handoffs in the critical path.

Instruction Store Limitations

Instruction store limitations represent a

constraint on the number of data paths or

processing functions that can be

simultaneously executed in the same

network processor. A solution to this

problem would be to have the binding

AIJREAS VOLUME 8, ISSUE 3 (2023, MAR) (ISSN-2455-6300)ONLINE

Anveshana’s International Journal of Research in Engineering and Applied Sciences

Anveshana’s International Journal of Research in Engineering and Applied Sciences
EMAILID:anveshanaindia@gmail.com,WEBSITE:www.anveshanaindia.com

29

system fetch code from off-chip memory

units into instruction stores on an on-

demand basis. This solution, however, can

significantly impact the performance of the

critical path because of the overhead

associated with accessing memory units.

Complexity of the Binding Algorithm

The last consideration for designing a

dynamic binding system is the complexity

of the binding algorithm. In many cases,

the complexity of a binding algorithm

affects the time scales over which the

binding algorithm can be applied. A

complex binding algorithm needs time to

execute, and is typically, not suitable for

applications that require fast data path

composition. Keeping the binding

algorithm simple while producing high

performance data paths is an important

design requirement for a good binding

system. Applications that require real-time

binding include classification, forwarding

and traffic management. The performance

of such data path algorithms depends on

the properties of classification databases,

routing tables and packet scheduling

configurations. These properties typically

change at run time calling for advanced

service creation environments for

programming the data path efficiently. A

dynamic binding system should ideally

support a wide range of packet processing

applications ranging from the creation of

virtual networks over slow time scales to

the fast creation of customized data paths,

after disasters occur. Disasters typically

result in rapid changes on the input traffic

characteristics and topologies of

communication networks. To

accommodate increased traffic demands or

to reroute traffic to alternate links once

some part of the communication

infrastructure is physically damaged,

communication networks need to be highly

adaptive, calling for new techniques and

software methodologies for rapid service

creation.

NETBIND SYSTEM

NetBind is a binding tool we have

developed that offers dynamic binding

support for the IXP1200 network

processor and consists of a set of libraries

that can modify IXP1200 instructions,

create processing pipelines or perform

higher-level operations (e.g., data path

admission control). Components are

written in machine language code called

“microcode” and grouped into processing

pipelines that execute in the IXP1200

microengines. As part of the Genesis

Project, we use the NetBind tool to

dynamically create virtual routers for

spawning networks. These virtual routers

share the resources of the same IXP1200

chip. In what follows, we present the

design and implementation of NetBind and

discuss support for virtual routers.

AIJREAS VOLUME 8, ISSUE 3 (2023, MAR) (ISSN-2455-6300)ONLINE

Anveshana’s International Journal of Research in Engineering and Applied Sciences

Anveshana’s International Journal of Research in Engineering and Applied Sciences
EMAILID:anveshanaindia@gmail.com,WEBSITE:www.anveshanaindia.com

30

Data Path Specification Hierarchy

Before creating data paths, NetBind

captures their structure and building blocks

in a set of executable profiling scripts.

NetBind uses multiple specification levels

to capture the building blocks of packet

forwarding services and their interaction.

NetBind uses multiple specification levels

in order to offer the programmer the

flexibility to select the amount of

information that can be present in data

path profiling scripts. Some profiling

scripts are generic, and thus applicable to

any hardware architecture. Some other

profiling scripts can be specific to network

processor architectures, potentially

describing timing and concurrency

information associated with components. A

third group of scripts can be specific to a

particular chip such as the IXP1200

network processor. Figure III illustrates the

different ways data paths are profiled in

NetBind. First, a virtual router

specification can be applied to any

hardware architecture. The virtual router

specification is generic and can be applied

to many different types of programmable

routers. The purpose of the virtual router

specification is to capture the composition

of a router in terms of its constituent

building blocks and their interaction,

without specifying the method which is

used for component binding.

Programmable routers can be constructed

using a variety of programming techniques

ranging from higher level programming

languages (e.g., Java) to hardware plugins

based of FPGA technologies. The virtual

router specification can be used for service

creation in a heterogeneous infrastructure

of programmable routers of many different

types. The virtual router specification

describes a virtual router as a set of input

ports, output ports and forwarding engines.

The components that comprise ports and

engines are listed, but no additional

information is provided regarding the

contexts that execute the components and

the way components create associations

with each other. There is no information

about timing and concurrency in this

specification.

Experimental Environment

Hardware Environment

To evaluate NetBind, we have set up an

experimental environment consisting of

three "Bridal Veil" development boards,

interconnecting desktop and notebook

computers in our lab. Bridal Veil [17] is an

IXP1200 network processor development

board running at 200 MHz and using 256

Mbytes of SDRAM off-chip memory. The

Bridal Veil board is a PCI card that can be

connected to a PC running Linux. The host

processor of the PC and the IXP1200 unit

can communicate over the PCI bus. The

PC serves as a file server and boot server

for the Bridal Veil system. PCI bus

network drivers are provided for the PC

and for the embedded ARM version of

Linux running on the StrongARM Core

processor. In our experimental

environment, each Bridal Veil card is

plugged into a different PC. In each card,

the IXP1200 chip is connected to four fast

Ethernet ports that can receive or transmit

packets at 100 Mbps.

Software Environment

Initially NetBind was developed for an

IXP1200 Ethernet evaluation board

running at 166 MHz. To evaluate NetBind

we ported the NetBind code into the Bridal

Veil system where we could also execute

MicroACE. MicroACE is a systems

architecture provided by Intel for

composing modular data paths and

network services in network processors

and on IXP1200 in particular. The

AIJREAS VOLUME 8, ISSUE 3 (2023, MAR) (ISSN-2455-6300)ONLINE

Anveshana’s International Journal of Research in Engineering and Applied Sciences

Anveshana’s International Journal of Research in Engineering and Applied Sciences
EMAILID:anveshanaindia@gmail.com,WEBSITE:www.anveshanaindia.com

31

MicroACE adopts a static binding

approach to the development of modular

data paths based on the insertion of a

"dispatch loop" code stub in the critical

path. The dispatch loop is provided by the

programmer and directs the program flow

through the components of a

programmable processing pipeline.

MicroACE is a complex system that can

be used for programming the microengines

and the Strong ARM Core as well.

Describing MicroACE in detail is beyond

the scope of this paper. The information

provided in this section is for the purpose

of understanding our evaluation and the

potential advantages or disadvantages of

using MicroACE and NetBind.

MicroACE overview

MicroACE is an extension of the ACE [17]

framework that can execute in the

microengines of IXP1200. In MicroACE,

an application defines the flow of packets

among software components called

"ACEs" by binding packet destinations

called "targets" to other ACEs in a

processing pipeline. A series of

concatenated ACEs form a processing

pipeline. A MicroACE consists of a

"microblock" and a "core component". A

microblock is a microcode component

running in the microengines of IXP1200.

One or more microblocks can be combined

into a single microengine image called

"microblock group". A core component

runs on the StrongARM Core processor.

Each core component is the control plane

counterpart of a microblock running in the

microengines. The core component

handles exception, control and

management packets.

Binding in MicroACE

The binding between microblocks in the

ACE framework is static and takes place

offline. The targets of a microblock are

fixed and cannot be changed at run time.

For each microengine, a microcode

"dispatch loop" is provided by the

programmer, which initializes a microcode

group and a pipeline graph. The size of a

microblock group is limited by the size of

the instruction store where the microcode

group is placed. Before a microblock is

executed, some global binding state needs

to be examined. The global binding state

consists of two variables. A

"dl_next_block" variable holds an integer

identifying the next block to be executed,

whereas a "dl_buffer_handle" variable

stores a pointer to a packet buffer

exchanged between components.

Specialized "source" and "sink"

microblocks can send or receive packets

to/from the network.

Dynamic Binding Analysis

MicroACE and NetBind have some

similarities in their design and realization

but also differences. MicroACE offers

much higher programming flexibility

allowing the programmer to construct

processing pipelines in the StrongARM

Core and the microengines as well.

NetBind on the other hand offers a set of

libraries for the microengines only.

MicroACE supports static linking allowing

programmers to use registers according to

their own preferences. MicroACE does not

impose any constraints on the number and

purpose of registers used by components.

NetBind on the other hand supports

dynamic binding between components that

can take place at run time. To support

dynamic binding NetBind imposes a

number of constraints on the purpose and

number of registers used by components as

discussed in Section III-A. The main

difference between NetBind and

MicroACE in terms of performance comes

from the choice of the binding technique.

AIJREAS VOLUME 8, ISSUE 3 (2023, MAR) (ISSN-2455-6300)ONLINE

Anveshana’s International Journal of Research in Engineering and Applied Sciences

Anveshana’s International Journal of Research in Engineering and Applied Sciences
EMAILID:anveshanaindia@gmail.com,WEBSITE:www.anveshanaindia.com

32

MicroACE follows a dispatch loop

approach where some global binding state

needs to be checked before each

component is executed. In NetBind there is

no explicit maintenance of global binding

state. Components are associated with each

other at run time through the modification

of their microcode. The modification of

microcode at run time, which is

fundamental in our approach, poses a

number of security challenges, which our

research has not addressed as yet. Another

problem with realizing dynamic binding in

the IXP1200 network processor is that

microengines need to temporarily

terminate their execution when data paths

are created or modified.

Quantitative Analysis

We evaluated the performance of the IPv4

data path discussed in Section III-C when

no binding is performed (i.e., the data path

is monolithic) and when the data path is

created using NetBind and MicroACE. We

also implemented a simple binding tool

based on the third alternative technique of

the vector table discussed in Section II. We

used this tool in our experiments in order

to contrast the three binding techniques,

presented in Section II, against each other

in a quantitative manner. To analyze and

compare the performance of different data

paths, we executed these data paths on

Intel's "transactor" simulation environment

and on the IXP1200 Bridal Veil cards.

Table 1 illustrates the additional

instructions that are inserted in the data

path for each binding technique:

Table 1: Binding Instructions in the

Data Path

bindi

ng

techn

ique

per component binding

instructions

 regist

er

opera

tion

condit

ional

branc

h

uncondi

tional

branch

mem

ory

(scra

tch)

trans

fer

NetBi

nd

1 1

dispa

tch

loop

2 1 2

vecto

r

table

 1 1

Figure: Dynamic Binding Overhead

We wrote a "worst case" but also generic

dispatch loop for the MicroACE data path.

The dispatch loop we wrote includes a set

of comparisons that determine the next

module to be executed on the basis of the

value of the "dl_next-block" global

variable. The loop is repeated for each

component. We have added 5 instructions

for each component in the dispatch loop:

(i) an "alu" instruction to set the

"dl_next_block" variable to an appropriate

value (ii) an unconditional branch to jump

to the beginning of the dispatch loop (iii)

an "alu" instruction to check the value of

the "dl_next_block" variable (iv) a

AIJREAS VOLUME 8, ISSUE 3 (2023, MAR) (ISSN-2455-6300)ONLINE

Anveshana’s International Journal of Research in Engineering and Applied Sciences

Anveshana’s International Journal of Research in Engineering and Applied Sciences
EMAILID:anveshanaindia@gmail.com,WEBSITE:www.anveshanaindia.com

33

conditional branch and an unconditional

branch to jump to the appropriate next

module in the processing pipeline.

Figure: Per-Packet Execution Time

Figure: Packet Processing Throughput

The vector table binding technique works

as follows: At the initialization stage, we

retrieve the entry point locations using

"load_addr" instructions. The vector is

then save into the 4K scratch memory of

IXP1200. For each component, we insert a

scratch "read" instruction to retrieve the

entry point from the vector table and a

"rtn" instruction to jump into the entry

point of the next module. The performance

of vector table scheme is heavily

dependent on the speed of memory access.

If the vector for the next component in the

pipeline can be retrieved in advance, the

overhead of binding can be reduced

drastically to 5 cycles per binding. The

advantage of having a multithreaded

network processor is that memory access

latencies can be hidden if the processor

switches context when performing time

consuming memory transfer operations.

Figure 9 shows additional execution cycles

for each binding technique. From the

figure, we observe that the dispatch loop

binding technique introduces the largest

overhead as expected, while the NetBind

code morphing technique and the vector

table technique demonstrate lesser

overhead. NetBind demonstrates the best

performance in terms of binding overhead

adding only 18 execution cycles when

connecting 6 modules to construct the

IPv4 data path. Figures 10 and 11 show

per-packet execution times and packet

processing throughput for the three

binding techniques and a monolithic data

path.

Conclusion

In this paper, we have presented the

design, implementation and evaluation of

NetBind, a binding tool that can

dynamically construct data paths in the

IXP 1200 network processor. The

methodology that underpins NetBind

balances the flexibility of network

programmability against the need to

process and forward packets at line speeds.

We have compared the performance of

NetBind against Intel's MicroACE system

and evaluated these two approaches in

terms of their binding overhead. We

proposed a binding technique that is

optimized for network processor-based

architectures, minimizing the binding

overhead in the critical path, and, allowing

network processors to forward minimum

size packets at line rates. NetBind aims to

balance the flexibility of network

programmability against the need for high

performance.

References

AIJREAS VOLUME 8, ISSUE 3 (2023, MAR) (ISSN-2455-6300)ONLINE

Anveshana’s International Journal of Research in Engineering and Applied Sciences

Anveshana’s International Journal of Research in Engineering and Applied Sciences
EMAILID:anveshanaindia@gmail.com,WEBSITE:www.anveshanaindia.com

34

1. Kounavis, M. E., Campbell A. T., Chou, S.,

Modoux F., Vicente, J., and Zhang H.,

(2001) "The Genesis Kernel: A

Programming System for Spawning

Network Architectures", IEEE Journal on

Selected Areas in Communication, Vol. 19,

No 3, pg. 511-526.

2. Campbell, A. T., Gormez, J., Kim, S.,

Valko, A., Wan, C., Turanyi, Z.,(2000)

"Design Implementation, and Evaluation

of Cellular IP", IEEE Personal

Communications, vol. 7 No. 4, pg. 42-49.

3. Pier Luigi Ventre et al (2019) Segment

Routing: a Comprehensive Survey of

Research Activities, Standardization

Efforts and Implementation Results,

Submitted To Ieee Communications

Surveys & Tutorials, arXiv:1904.03471v3

[cs.NI] 11.

4. Khalid Abualsaud et al (2008) Impact of

MD5 authentication on routing traffic for

the case of: EIGRP, RIPv2 and OSPF,

Journal of Computer Science ISSN 1608-

4217, 4(9),

DOI:10.3844/jcssp.2008.721.728.

5. Siddesh Vishesh (2017) Simulation of

Wireless BAN using Network Simulation

Tool, International Journal of Advanced

Research in Computer and

Communication Engineering, ISSN: 2278-

1021, Vol. 6, Issue 1, DOI

10.17148/IJARCCE.2017.6181.

6. Kailasam Selvaraj et al (2019) Design and

Development of Virtual Local Area

Network and Securing Network using

Network Address Translation,

International Journal of Recent

Technology and Engineering, ISSN: 2277-

3878, Volume-8 Issue-4S2.

7. Sanam. Nagendram et al (2019)

Performance Evaluation of Wide Area

Network using Cisco Packet Tracer,

International Journal of Advanced Trends

in Computer Science and Engineering,

ISSN 2278-3091, Volume 8, No.6,

https://doi.org/10.30534/ijatcse/2019/3886

2019.

8. Ashish Kumar (2017) Implementation of a

Company Network Scenario Module by

using Cisco Packet Tracer Simulation

Software, Advances in Computer Science

and Information Technology, SSN: 2393-

9915; Volume 4, Issue 5, pp. 285-291,

http://www.krishisanskriti.org/Publication.

html.

9. Michel Bakni et al (2018) An Approach to

Evaluate Network Simulators: An

Experience with Packet Tracer, Revista

Venezolana de Computación, ISSN: 2244-

7040, Vol. 5, No. 1, pp. 29-36,

http://www.svc.net.ve/revecom.

