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Abstract 

New therapeutic drugs have become more 

expensive and time-consuming during the last 30 

years. Despite pharmaceutical companies spending 

in research facilities and scientific tools, efforts to 

increase compound flow along the drug 

development pipeline have mainly failed. 

Non-systematic literature research identified 

pharmaceutical R&D success methods. The review 

discusses genomes and proteomics, medication 

repurposing and repositioning, collaborative 

research, underdeveloped therapeutic domains, 

outsourcing strategy, pharmaceutical modeling, 

and artificial intelligence. This method yielded the 

following medications. Genomics and proteomics 

have found numerous therapeutic targets and 

improved target identification and validation, 

reducing efficacy-related drug attrition. Phenotypic 

and target-based screening systems may allow 

serendipitous and rational drug discovery. Sharing 

resources and ideas decreases early drug 

development overhead expenses. Innovative drug 

targets in neglected therapeutic areas are 

encouraged by drug regulators. 

Contract research organizations let pharma 

businesses focus on their strengths while 

outsourcing. Current and novel pharmacological 

modeling and artificial intelligence software and 

technologies allow in silico computation for more 

efficient computer-aided drug creation. These 

strategies may enhance pharmaceutical research 

and innovation if utilized wisely. 

Keywords: Target-based screening, Artificial 

intelligence, Proteomics, Phenotypic, 

Repositioning, Repurposing 

Introduction 

Diseases always battled humans. Historical 

plague control items. Biology and organic 

chemistry enhanced drug discovery. The 

former helped scientists comprehend 

pathophysiology and accurately identify 

metabolic derangements driving disease 

phenotypes. Organic chemistry 

synthesized and semi-synthesized novel 

medicinal molecules for present and future 

medical needs [2]. British bacteriologist 

Alexander Fleming accidentally 

discovered penicillins in 1928. Penicillin 

began medication development. Drugs 

boosted life and longevity [3]. 

Drug development fell in the 1980s [4]. 

Less than one in 10,000 potential 

therapeutic molecules that begin drug 

development reach the clinic [5]. We may 

have exhausted the low-hanging fruit, 

making innovative drugs harder to sell. 

Increased efficacy, potency, toxicity, ease 

of administration, and cost [6]. 

Combinatorial chemistry and high-tech 

platforms to identify lead compounds may 

yield very lipophilic (greasy) molecules 

with poor water solubility and 

pharmacokinetics [7]. Discovering and 

developing new medicinal compounds 

now costs US$2.6 billion per molecule due 

to these factors. Mergers and acquisitions 

have limited the number of pharmaceutical 

companies willing to take financial risks 

[8]. 

Certain diseases continue to plague 

governments and civilizations, but most 

can be treated. Unmet medical demands 

are significant for neoplastic diseases, 

diabetes, Alzheimer's disease, 

immunological disorders, HIV-AIDS, 
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neglected tropical diseases (NTDs), and 

rare diseases [9]. These illnesses need new 

treatment ingredients. 

 

Identifying a disease or disease area with 

an unmet medical need is the first step in 

drug development. Elucidating the illness's 

molecular foundations and establishing 

animal disease models and test platforms 

are pre-discovery steps. Following that, 

therapeutic objectives are chosen. In the 

hit-to-lead discovery phase, the drug 

development team begins with initial hit 

compounds and alters them to boost 

potency, reduce adverse effects, and 

improve physicochemical features. 

Following pre-clinical studies and drug 

development, a candidate medication 

becomes a clinically effective medical 

product with demonstrated effectiveness, 

safety, dose, and tolerability [11]. 

Strategies for improved success in the 

drug discovery and development 

process Key approaches 

Pharmaceutical R&D programs have used 

several strategic methods to speed up 

medication discovery and development. 

They include genomics and proteomics, 

phenotypic and target-based screening 

methods, repurposing and repositioning 

pharmacological substances, collaborative 

research, underserved therapeutic areas, 

outsourcing, pharmaceutical modeling, and 

artificial intelligence. 

Exploitation of genomics and 

proteomics 

Genetic or molecular abnormalities 

predominate [12, 13]. Single gene 

mutations cause sickle cell, cystic fibrosis, 

muscular dystrophy, and Huntington 

illnesses [14]. Gene mutations and lifestyle 

variables promote diabetes and 

cardiovascular disease [12]. Drug 

discovery identifies genes as disease, 

disease-modifying, and druggable [15]. 

Disease-causing gene mutations [16]. 

Functional proteins from disease-

modifying genes cause and progress 

illness. Druggable genes generate proteins 

with drug-recognition domains [17]. 

Target-based pharmaceutical development 

requires meticulous target identification 

and confirmation to show disease 

phenotypic requirement. Effectiveness 

concerns cause 52% of clinical trial drug 

failures, preventing downstream attrition. 

Figure 2 shows attrition causes [18, 19]. 

Genomic analysis may be utilized to 

repurpose existing drugs [23]. Genomics 

finds druggable targets. 

 

 
Fig. 2 Causes of attrition in drug 

discovery and development 

genes [17, 24]. Genomic target validation 

has extended using antisense technology, 

siRNA that replicates natural RNA 

interference (RNAi), and transgenic 

animal models [25]. 

Genomics extends beyond target selection 

and validation. Pharma R&D 

developments imply genetics may be used 

to recruit clinical trial participants, 

favoring those most likely to benefit from 

the intervention. This ensures that the 

drug's effect will be evident if it treats the 

target ailment and absent if not. Hence, 

therapy explains the outcome. Genomics 

predicts molecule-specific toxicity [22]. 
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Academics and practitioners are using 

pharmaco-genomics to improve 

medication discovery and development 

[22]. 

The 2002 human genome description 

provided a wealth of potential medicinal 

targets. DNA, RNA, GPCRs, enzymes, 

and ion channels target. [27]. Extensive 

genomic research is predicted to assist 

drug development [28]. 

 

Popular drug research uses proteomics 

[29]. Proteomics discovers, classifies, and 

measures cellular proteins to understand 

disease development and 

chemotherapeutic manipulation [25]. Drug 

development for antineoplastics, 

neurological, cardiovascular, and rare 

illnesses using proteomics [30]. Gel 

electrophoresis, MS, and yeast hybrid 

systems are used in proteomics [31]. New 

drug targets and genes may be found using 

these strategies. 

Complementary phenotypic and target-

based screening platforms 

Efficacy investigations include phenotypic 

(whole-cell) and target-based 

(biochemical) screening. Phenotypic 

screenings first reveal substances that may 

offer the needed pharmacological effect 

without understanding the molecular 

mechanism of action. Phenotypic 

endpoints drive them empirically. 

Phenotypic drug screening delivers more 

information and demonstrates therapeutic 

relevance earlier in drug development. The 

strategy is more physiologically relevant in 

biological systems that mimic the genuine 

physiological environment because it 

acknowledges that pharmacological effects 

are induced by numerous sources [33, 34]. 

It facilitates serendipitous drug discovery 

[32, 35]. Yet, target-based screening is 

hypothesis-driven, rigorous, and rational. 

It entails discovering and isolating a 

biological target that controls a desired 

pharmacological activity. It employs HTS-

friendly molecular and biological methods 

[36]. 

Molecular biology and genomics replaced 

phenotypic screening with target-based 

screening [37]. First-in-class compound 

discovery has declined due to target-based 

drug discovery [34]. Phenotypic drug 

discovery has generated more first-in-class 

drugs than target-based screening, 

according to US-FDA data [38]. 78 of 113 

first-in-class drugs registered between 

1999 and 2013 were found using target-

based screening [39]. When using whole 

animals, phenotypic tests can't screen and 

are hard to use to represent diseases like 

Alzheimer's [40]. Several studies have 

demonstrated that animal models cannot 

predict human therapy outcomes [41]. 

For 30 years, molecular screening has 

focused on target-based drug discovery 

[33, 42]. HTS can screen a large chemical 

library because to improvements in protein 

cloning. Due to its great screening 

capacity, target-based platform has 

become the standard drug discovery 

method as businesses strive to bring novel 

compounds to market [36]. Target-based 

medication development begins with 

disease pathophysiology and biochemical 

pathway discovery. 

Target-based drug discovery shows how 

drugs work. Phenotypic drug discovery 

yields first-in-class molecules, whereas 

target-based drug discovery yields best 

follower drugs [38]. The rational, 

methodical approach produces more 

selective, potent molecules with better 

pharmacokinetic and toxicological 

properties. Target-based drug discovery is 

quicker, simpler, and can disclose the 

mechanism of action. Computational 
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modeling, molecular biology, 

combinatorial chemistry, proteomics, and 

genomics are also possibilities. 

Since pharmacological effects result from 

complex interactions in intact 

physiological systems, phenotypic drug 

discovery better predicts human disease 

therapy than target-based methods. Thus, 

pharmaceuticals must be rationally 

developed to improve toxicological 

profiles and give well-defined mechanisms 

of action of the pharmacologically active 

substances to improve pharmacokinetics 

and pharmacodynamics. Hence, using both 

methods together will increase drug 

discovery efficiency, with the phenotypic 

technique providing first-in-class 

molecules with proven efficacy early on. 

Target-based medication development will 

employ active molecule-target chemical 

interactions to improve follower 

molecules. 

Repurposing and repositioning of 

existing drug molecules 

Medications developed for one reason may 

help other therapies. Drug repurposing 

may test these molecules for new diseases 

without structural changes [46]. Drug 

repositioning changes the chemical 

structure to boost a desired side effect and 

decrease the main effect [47]. Both 

strategies may resurrect abandoned 

molecules and expand therapeutic usage of 

current drugs. Table 2 highlights drug 

repurposing and repositioning 

achievements. Due to dose-limiting 

gastrointestinal adverse effects, 1980s 

anticancer drug miltefosine was 

discontinued. Effectively refocused as 

antileishmanial [49]. Its latest anti-

infective use is granulomatous amoebic 

encephalitis [50]. 

Sildenafil is another excellent drug 

repurposing. After treating patent ductus 

arteriosus-related pulmonary arterial 

hypertension, sildenafil and other 

phosphodiesterase type 5 inhibitors 

became popular for treating erectile 

dysfunction [51, 52]. Systematic structural 

changes raised hypoglycemia and lowered 

antibacterial activity in the R&D of 

antidiabetic sulfonylureas from 

sulfonamide antibiotics [53]. Using 

pharmacokinetics, toxicological, and other 

data, drug repurposing and repositioning 

saves time and money [8, 46]. Protozoan 

and helminthic medication repurposing is 

feasible [54]. Repurposing/repositioning 

may save many experimental drugs [54]. 

Experimental screening and in silico 

approaches repurpose or reposition drugs 

[47]. 

Table 1 Advantages and disadvantages 

of phenotypic and target-based drug 

discovery approaches 

 
Collaborative research 

Pharmaceutical corporations naturally 

fight to offer new blockbuster medications. 

Early market participants profit. Pioneers 

may develop brand awareness and 

physician and patient loyalty before 

competition [55]. Early entrants may 

enhance items and set pricing. Pharma 

companies regularly create chemicals with 

similar medicinal goals. Due to substantial 
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pharmaceutical R&D funding, recurrent 

research wastes resources that may be 

utilized for other diseases with unmet 

medical needs. Collaborations have helped 

pharma R&D. Pharma-academia 

collaboration, precompetitive research, and 

PPP models [56]. 

Precompetitive research by 

pharmaceutical, biotechnology, and 

academic drug development organizations 

helps find and innovate drugs. 

Table 2 Examples of successfully 

repurposed drugs 

 
Precompetitive research confirms a 

treatment strategy before drug discovery 

and development. Target discovery, 

validation, chemical library sharing, 

biomarker and assay creation, and 

precompetitive cooperation minimize 

research costs by sharing resources and 

information, enhance efficiency by 

concentrating on core competences, and 

stimulate scientific innovation [57]. Video-

conferenced virtual universities monitor 

precompetitive collaborative development. 

Precompetitive collaborations Biomarkers 

Consortium, Innovative Medicine 

Initiative, and TranSMART [59]. 

TransMART holds government, academic, 

and patient advocacy group clinical trial 

and basic research data [60, 61]. In 2011, 

the US-FDA established drug registration 

criteria to highlight the advantages of pre-

competitive collaboration [62]. 

Under-served therapeutic fields 

A company must plan drug research before 

commencing. Therapeutic molecule 

market entry economics are crucial. To 

keep the discovery industry viable and 

support new drugs, each drug development 

candidate must have an acceptable return 

on investment. Hence, most 

pharmaceutical R&D is concentrated on 

high-return therapeutic areas including 

cancer, immunotherapy, endocrinology, 

neurology, and cardiology [41]. NTDs and 

rare diseases, which have minimal 

financial rewards, are overlooked, hence 

new discoveries are rare [70]. Rare genetic 

diseases have few patients and minimal 

economic potential. Vector-borne NTDs 

harm billions in resource-poor countries. 

Pharma businesses may lose money 

because these folks have little purchasing 

power [71]. 

NTDs and uncommon diseases may 

provide novel drug targets for more 

profitable diseases. Orphan drugs may 

safeguard firms against blockbuster patent 

expirations [73]. Drug companies may 

explore [74]. 

Outsourcing strategies 

Outsourcing involves contracting out 

services formerly conducted in-house or to 

gain additional skills. Outsourcing drug 

development may improve efficiency. 

Target identification, validation, disease 

model construction, lead discovery and 

optimization, pre-formulation research, 

and individual or full clinical trials might 

be outsourced [76]. CROs may help 

pharmaceutical companies focus on their 

strengths. 

Outsourcing to specialists speeds up 

development and saves money. CROs 

outperform pharmaceutical companies in 

clinical trials [77]. Outsourcing medication 
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research and development cuts costs, 

boosts efficiency, and optimizes resource 

allocation [78]. Competent partners and 

careful project implementation maximize 

benefits [79]. Controls are needed to 

ensure contracted businesses follow the 

ethical guideline during studies [8]. 

Pharma AI modeling In silico models 

estimate drug molecule pharmacokinetics 

and pharmacodynamics [80]. Virtual 

screening, which replicates drug-receptor 

binding processes, has considerably 

increased drug discovery efficiency. 

CADD concentrates in vitro validation 

screens. Second, the CADD may assist the 

medicinal chemistry team increase 

receptor affinity or DMPK properties 

including absorption, distribution, 

metabolism, excretion, and toxicity 

(ADMET). Lastly, the CADD facilitates 

rational drug design by "growing" initial 

molecules one functional group at a time 

on the target site (de novo drug design) or 

by assembling fragments into distinct 

compounds (fragment-based drug design) 

[81]. CADD employs ligand- and target-

based virtual screening to exclude 

compounds with poor physicochemical 

and toxicological characteristics and select 

those with the desired activity. 

 

Next, quantitative-structure activity 

relationship (QSAR) models relate 

structural and physicochemical properties 

of a homologous sequence to biological 

activity. A mathematical model predicts 

test substance properties by reducing 

known compounds' chemical structures to 

molecular descriptors. The model picks 

active molecular descriptors [82]. Target-

based virtual screening employs computer 

models to analyze compound docking 

against the target's three-dimensional 

structure (X-ray crystal structure or 

homology model) [83–85]. Each test 

chemical is placed on the binding site and 

graded for binding affinity. In vitro 

production and evaluation of top-scoring 

compounds [86]. These models may aid 

drug development with targeted screening. 

To avoid expensive late-stage failures, 

problematic substances are detected early 

in therapeutic development. Combining 

ligand-based and target-based virtual 

screening increases results [32, 87]. 

Modeling and simulation are used in 

clinical drug development [88]. Modeling 

relies on empirical patient data 

polynomials. To improve efficiency, 

quality, and cost, bio-simulation may drive 

clinical trial design, planning, execution, 

and evaluation. In clinical trials and in 

specific populations like children, 

geriatrics, pregnant women, and others 

with restricted physiological circumstances 

that impact drug disposal, 

pharmacodynamic and pharmacokinetic 

models predict optimal dosage levels. 

Clinical studies are quicker and cheaper 

using modeling [89, 90]. 

AI is used more in drug development. 

Reliable prediction models need large 

chemical and biological information. AI 

can analyze billions of potential molecules 

for hit detection, prioritize offered 

alternatives, and validate biological 

targets, according to scientists. In late drug 

development, it may help lead 

optimization and clinical trial design. 

Hence, strategic AI adoption may 

considerably accelerate R&D efforts to 

generate creative, effective, and safe drugs 

to meet unmet clinical needs [92]. To cure 

complex disorders, generative deep 

learning networks may propose wholly 

novel substances with the right physical 

and biological properties. They can also 

optimize compounds. To identify lead 
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molecules with excellent physicochemical, 

biological, and pharmacokinetic features, 

AI uses machine learning to multi-

objectively optimize lead molecules [93].  

Conclusion 

Rising drug development costs have not 

improved medicine delivery. Instead, 

fewer drugs are being developed. 

Overreliance on high-tech platforms, 

demanding drug registration and approval 

requirements for innovative drugs, and the 

depletion of obvious and easy-to-reach 

therapeutic targets necessitating study of 

increasingly sophisticated biological 

systems are the primary drivers of 

productivity loss. 

Genomes and proteomics can now 

discover and verify pharmaceutical targets. 

Target identification and validation will 

reduce over 50% of drug failures owing to 

poor effectiveness. Phenotypic and target-

based drug development may find first-in-

class compounds and safer, more effective, 

more potent best-in-class following 

molecules. Encouraging research into rare 

and neglected diseases would safeguard 

corporations with patent-cliffed 

blockbuster products. Computer 

improvements will assist choose 

successful customized displays. 

Pharmaceutical modeling and AI will 

improve medication discovery and 

development. Well-implemented 

outsourcing allows enterprises to focus on 

their core competencies while delegating 

other development processes to CRO 

professionals, speeding discovery and 

lowering overhead. 
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